

A brief history

Research purpose and questions

→ Explore which areas in Tsay Keh Dene Territory have high conservation value (both ecologically and culturally), exhibit landscape connectivity, and are resilient to climate change

- 1. Which areas have the highest conservation value today?
- 2. Which areas retain conservation value when climate change is considered?
- 3. How can landscape connectivity be explicitly included in the SCP process?
- 4. Which stages of the SCP process provide an opportunity for the interweaving of Traditional Ecological Knowledge to produce a more inclusive conservation plan?

Research purpose and questions

→ Explore which areas in Tsay Keh Dene Territory have high conservation value (both ecologically and culturally), exhibit landscape connectivity, and are resilient to climate change

- 1. Which areas have the highest conservation value today?
- 2. Which areas retain conservation value when climate change is considered?
- 3. How can landscape connectivity be explicitly included in the SCP process?
- 4. Which stages of the SCP process provide an opportunity for the interweaving of Traditional Ecological Knowledge to produce a more inclusive conservation plan?

SCP methods and the interweaving of Traditional **Ecological** Knowledge

Interweaving of Traditional Ecological Knowledge

Full list of focal conservation features

Coarse-Filter Features						
Abiotic	Land Facet Diversity					
	Land Facet Rarity					
Environmental	Elevational Diversity					
	Ecotypic Diversity					
	Heat Load Index Diversity					
Biotic	(Disturbance)-(BEC Zone)-(Age/Burned)					
	Ex 1: NDT1-ESSF-Burned					
	Ex 2: NDT2-SBS-Mature/Old					
	Rare BEC Zones					

Fine-Filter Features					
Species	Grizzly Bear				
	Bull Trout/Fish				
	Fisher				
	Caribou (by herd)				
	Moose				
	Stone Sheep				
	Mountain Goat				
	Wolverine				
	Bank Swallow				
	Barn Swallow				
	Western Toad				
	Horned Grebe				
	Little Brown Myotis				
	Northern Myotis				
	Olive-Sided Flycatcher				
	Rusty Blackbird				
Special Features	Wetlands				
	Lakes				
	Karst Deposits				

	Climate Change Features	
Migration	Backward Velocity 2055	
	Backward Velocity 2085	
	Forward Velocity 2055	
	Forward Velocity 2085	
	Climate Corridors	
Refugia	Cool Headwater Refugia	
	Climatic Refugia	
~	Biotic Refugia	
Misc.	Bird Richness	
V	Carbon Storage (above and below ground)	
	Cultural Features	
	Sites of Cultural Importance	
	Cultural/Spiritual Areas	
	Subsistence Areas	
	Connectivity Features	
	Linkage Mapper	
	Omniscape	

Conservation features

Human footprint

Recreation

Agriculture

Urbanization

Industrial Sites

Roads

Connectivity-focused conservation

- → Use of connectivity tools
- → Solution characteristics

Connectivity

Scenarios

- → Present
- → Futures (2050 & 2080)
- \rightarrow Both
- → Connectivity
 - Between protected areas
 - Entire landscape

	Scenario A	Scenario B	Scenario C	Scenario D	Scenario E	Scenario F
Targets Set for:	Present	Future (2050s)	Future (2080s)	Present + Future (both)	Present	Futures (both)
Footprint:	Permanent + Semi- Permanent	Permanent	Permanent	Permanent + Semi- Permanent	Permanent + Semi- Permanent	Permanent
Locked-in Areas:	None	None	None	None	Protected Areas + Least-Cost Paths	Omniscape "Bones"

Example applications

→ Informing grizzly camera trap study

→ Refining of Ingenika Conservation & Management Area

: Chu Cho Environmental & ThinkLink Graphics

Practical implications

→ Day-to-day

 An actionable strategy and plan for effective conservation as resource extraction referrals are processed

→ Long-term

A suite of potential conservation areas for consideration

Conclusions

- → Effort of inclusion and reciprocity
- → Aid holistic decision-making
- → Convey an updateable tool accepted by all
- → Leverage multiple ways of knowing to sustain both people *and* the land

SCP Tool Application Icon

Acknowledgements

Limitations

- → Connectivity and TEK both considered in identifying high-value conservation areas, but TEK did not explicitly inform connectivity analyses
- → Beyond scope of project to collect data from community discussions to produce TEK-sourced movement data

