

Technical Data Report

Marine Fish and Fish Habitat

ENBRIDGE NORTHERN GATEWAY PROJECT

Jacques Whitford Ltd. Calgary, Alberta

Janine Beckett, M.Sc., R.P.Bio. Karen Munro, M.Sc., R.P.Bio.

2010

PREFACE

This TDR presents the results of data collected between 2005 and 2009. These data are used in Volume 6B, Sections 7, 8 and 9 of the environmental and socio-economic assessment (ESA) for the Project.

Table of Contents

1	Introc	luction .		1-1
	1.1	Objecti	ives	1-1
2	Methe	Methods		
	2.1	Study A	Study Area Boundaries	
		2.1.1	Study Area for Existing Data Review	2-1
		2.1.2	Study Area for Field Surveys	2-1
	2.2	Review	v of Existing Data Sources	2-5
	2.3	Field Surveys		2-5
		2.3.1	Intertidal Habitat Characterization	2-7
		2.3.2	Subtidal Habitat Characterization	2-8
		2.3.3	Nearshore Fish Survey	2-15
		2.3.4	Nearshore Crab Survey	2-16
	2.4	Modelli	ing	2-16
		2.4.1	Sediment Plume and Dispersion Modelling Methodology	2-16
3	Resu	lts of Ba	seline Investigations	3-1
	3.1	Results	s from Data Review	3-1
		3.1.1	General Review	3-1
		3.1.2	Fisheries Act	3-2
		3.1.3	Species at Risk Act (SARA)	3-2
		3.1.4	Wildlife Act	3-4
		3.1.5	Species-Specific Information	3-4
		3.1.6	Shoreline Classification	3-34
	3.2	Field S	urvey Results	3-35
		3.2.1	Intertidal Habitat Characterization Results	3-35
		3.2.2	Subtidal Habitat Characterization Results	3-44
		3.2.3	Nearshore Fish Survey	3-56
		3.2.4	Nearshore Crab Survey	
	3.3	Modelli	ing Results	3-64
		3.3.1	Sediment Plume and Dispersion Modelling Results	3-64
4	Refer	ences		4-1
	4.1	Literature Cited		4-1
	4.2	Personal Communications		4-5
	4.3	Interne	4-5	
Appendix A			ASL Sediment Dispersion Model	A-1
App	endix B		Marine Foreshore Survey Species Summary	B-1
Appendix C			Sediment and Seawater Chemistry Testing	
Annendix D			Subtidal Video Survey	D-1
· 'PP'				

List of Tables

Table 2-1	Marine-related Field Studies, Personnel and Dates Undertaken in the PEAA	2-6
Table 2-2	Vegetation abundance classes	2-13
Table 2-3	Faunal distribution classes	2-14
Table 2-4	Seawater Sample Handling Information	2-15
Table 3-1	Marine Fish and Invertebrate Species of Special Concern in the CCAA	3-3
Table 3-2	Shoreline Classification and Sum Length for the PEAA	3-34
Table 3-3	Shoreline Classification and Sum length for the CCAA	3-35
Table 3-4	Confidence Levels in Data Interpretation (June 2006 survey of south marine PDA)	3-47
Table 3-5	Confidence Levels in Data Interpretation (June 2007 survey of north marine PDA)	3-47
Table 3-6	Summary of Exceedances of Sediment Quality Guidelines	3-51
Table 3-7	Water Quality Guideline Exceedances for Seawater	3-52
Table 3-8	Sediment Polycyclic Aromatic Hydrocarbon Levels near the Kitimat Terminal and Reference Areas	3-53
Table 3-9	Survival and Growth Results for Marine Invertebrates	3-55
Table 3-10	Most Dominant Taxa at Each Station	3-58
Table 3-11	Most Common Species at Each Station	3-58
Table 3-12	Benthic and Pelagic Fish Recorded during Fish Surveys	3-60
Table 3-13	Beach Seine Catches in Douglas Channel, July 2005	3-61
Table 3-14	Gillnet Catches in Douglas Channel, September 2005	3-62
Table 3-15	Longline Catches in Douglas Channel, September 2005	3-62

List of Figures

Figure 2-1	Confined Channel Assessment Area	2-2
Figure 2-2	Marine Fish and Fish Habitat PEAA and PDA	2-3
Figure 2-3	DFO Fisheries Management Area 5 and 6 and Subareas	2-4
Figure 2-4	Quantitative Intertidal Survey Methodology	2-9
Figure 2-5	Qualitative Subtidal Survey Site Locations	2-10
Figure 2-6	Proposed Transects for Quantitative Subtidal Video Survey	2-12
Figure 3-1	General Overview of the Pacific Salmon Lifecycle	3-5
Figure 3-2	Chum Salmon in Marine and Spawning Phases	3-6
Figure 3-3	Pink Salmon in Marine and Spawning Phases	3-7
Figure 3-4	Coho Salmon in Marine and Spawning Phases	3-8
Figure 3-5	Chinook Salmon in Marine and Spawning Phases	3-10
Figure 3-6	Sockeye Salmon in Marine and Spawning Phases	3-11
Figure 3-7	Steelhead Trout in Marine and Spawning Phases	3-12
Figure 3-8	Sea-Run Cutthroat Trout	3-13
Figure 3-9	Eulachon	3-14
Figure 3-10	Pacific Herring	3-15
Figure 3-11	Herring Spawning Areas	3-17
Figure 3-12	Inshore Rockfish Species - Copper and Tiger Rockfish	3-18
Figure 3-13	Bocaccio	3-19
Figure 3-14	Shiner Perch	3-21
Figure 3-15	Pile Perch	3-21
Figure 3-16	Seaperch	3-22
Figure 3-17	Threespine Stickleback	3-22
Figure 3-18	Pacific Halibut	3-23
Figure 3-19	Dungeness Crab	3-25
Figure 3-20	Kelp Bed Locations along the Outer Coast	3-30
Figure 3-21	2005 Intertidal Reconnaissance Survey Transect Locations	3-36
Figure 3-22	Intertidal Survey Transect Locations	3-43
Figure 3-23	Subtidal Video Survey Transect Locations	3-46
Figure 3-24	Sediment and Water Quality Sampling Locations	3-50
Figure 3-25	Benthic Invertebrate Sampling Stations	3-57
Figure 3-26	Nearshore Fish Survey Stations	3-59
Figure 3-27	Crab Trapping Locations	3-63

List of Photos

Rock Wall and Ramp, Sheltered	3-37
Exposed Rock Wall and Ramp	3-38
Boulder Beach	3-39
Sand and Cobble Beach	3-40
Estuarine Habitat in Bish Cove	3-41
Typical marine Riparian vegetation in the PDA	3-42
	Rock Wall and Ramp, Sheltered Exposed Rock Wall and Ramp Boulder Beach Sand and Cobble Beach Estuarine Habitat in Bish Cove Typical marine Riparian vegetation in the PDA

Abbreviations

BC MAL	British Columbia Ministry of Agriculture and Lands
BTEX	benzene, toluene, ethylbenzene and xylenes
CCAA	confined channel assessment area
CCME	
CD	chart datum
СЕРА	Canadian Environmental Protection Agency
CISTI	Canadian Institute of Scientific and Technical Information
COCIRM-SED	(3-D) coastal circulation and sediment model
COSEWIC	Committee on the Status of Endangered Wildlife in Canada
CRIMS	Coastal Resource Information Management System
DFO	Fisheries and Oceans Canada
DGPS	Differential Global Positioning System
DOM	dissolved organic matter
DL	detection limit
ESA	environmental and socio-economic assessment
FDEP	
FMA	Fisheries Management Area
HHWLT	higher high water, large tide
HMW	high molecular weight
ISQG	interim sediment and quality guidelines
LLWLT	lower low water, large tide
LMW	low molecular weight
LNT	lowest normal tides
LRDW	Land and Resource Data Warehouse
LUCO	Land Use Coordination Office (British Columbia)
MDL	method detection limit
MLLW	mean lower low water
NH ₃	ammonia
NOAA	National Oceanic and Atmospheric Administration
NTIS	National Technical Information Service
PAH	polycyclic aromatic hydrocarbon
PCB	
PDA	project development area
PEAA	project environmental assessment area
PEL	probable effects level
PNCIMA	Pacific North Coast Integrated Management Area
ppt	
SARA	
SL	standard length
TDR	technical data report

the Project	. Enbridge Northern Gateway Project
TSS	total suspended solids

Glossary

algae	A large and diverse group of simple, typically autotrophic organisms that are photosynthetic, like terrestrial plants. The largest and most complex marine forms are seaweed.		
backshore zone	The area inland from the shore or beach.		
bathymetry	Seafloor terrain as measured by depth sounding or radar.		
beach seine	When two people drag a seine net along the bottom of a water body close to shore from the beach, usually in the intertidal or subtidal zone.		
benthic	Refers to a region at or near the bottom of a body of water, or to organisms living there.		
benthic invertebrates	Animals without a vertebral column that live at or near the bottom of a body of water.		
biota	Collection of organisms of a geographic region or a time period.		
bioturbation The displacement and mixing of sediment particles by benth fauna.			
bivalves	A marine or freshwater mollusc belonging to the taxonomic class <i>Bivalvia</i> . It has a soft body with plate-like gills enclosed within two shells hinged together.		
boulder and cobble	Boulder is defined by Williams (1993) to be rocky substrate greater than 256 mm in diameter. Cobble is defined to be rocky substrate 64 to 256 mm in diameter.		
boulder beach	A shoreline with predominantly rocky substrate greater than 256 mm in diameter.		
dissolved metals	An element or compound that has passed into solution.		
epibiota	Organisms living on the surface of other organisms.		
estuarine	Relating to, or formed in, an estuary.		
gillnet	A monofilament netting that is either weighted to the ocean floor or set adrift. Fish are caught as they try to swim through the webbing, entangling their gills.		
herbivory	The consumption of living plant tissue by organisms.		
inclinometer	An instrument used for measuring slope or angles.		
infauna	Animals that live within bottom sediments.		

intertidal (zone)	The area of the shoreline exposed and submerged by the tide cycle.		
invertebrates	Animals without a vertebral column.		
longline	Fishing gear consisting of a series of baited hooks attached to a longline. The line can be weighted, for fishing on the ocean bottom, or be suspended on floats in the water column. This is a type of fixed gear. (See also hookline.)		
Lyngbye-associated wetland	Wetland habitat that is associated strongly with Lyngbye's sedge (<i>Carex Lyngbyei</i>).		
macrophytes	Aquatic plants that grow in or near water.		
mean lower low water	The average of the lowest tide recorded at a tide station each day during the recording period.		
monoecious	Having male and female reproductive organs in the same organism.		
outcrossing	Introducing unrelated genetic material into a breeding line.		
pelagic	Inhabiting the open sea over or beyond the continental shelf and returning to shore only to breed.		
pH	The common measure of the acidity or alkalinity of a liquid.		
quadrat	A measured and marked square used to isolate a sample area.		
ramp	Steep, rocky shoreline that has a slope greater than 30 degrees.		
redox potential	The tendency of an ion, atom or molecule to acquire electrons.		
rock wall	Shoreline type composed of near-vertical bedrock substrate.		
salinity	The saltiness or dissolved salt content of a body of water.		
secchi disk	A circular disk used to measure water transparency in oceans.		
shore normal	At right-angles to the contours in the surf zone.		
silt veneer	A thin layer or sheet of soil or rock derived granular material of a grain size between sand and clay.		
substrate	A surface on which an organism grows or to which it is attached.		
subtidal	The ocean environment below low tide that is always covered by water.		
taxa	Groups of biological organisms.		
total organic carbon	The amount of carbon bound in an organic substance.		

total suspended solids	The total particulate matter (i.e., total suspended sediments) suspended in a unit of liquid. Particles can include microscopic biota, clay, or silt with attached organic and inorganic nutrients, mixed in the water column by currents or waves. Primary sources include river runoff, biological production and atmospheric fallout, with anthropogenic contributions from waste water effluent and substrate disturbances.
transect	A path or line along which surveys are conducted.
Veliger larvae	The larval stage of a shelled organism/bivalve mollusc where it has ciliated membranes for swimming and feeding.

1 Introduction

1.1 Objectives

The purpose of this document is to describe the baseline characteristics of the biophysical elements of marine fish and fish habitat that will be assessed in the environmental and socio-economic assessment (ESA) for the Enbridge Northern Gateway Project (the Project). Characteristics of the underwater acoustic environment are described in a separate report (see the Marine Acoustics (2006) Technical Data Report [JASCO 2006]). Information from the technical data report (TDR) will be used to identify construction and operational measures required to limit or avoid adverse effects on marine fish and fish habitat. Information has been generated and synthesized from existing literature sources and field surveys for the following key data categories:

- intertidal survey methodology and results
- subtidal survey methodology and results
- fish survey methodology and results
- crab survey methodology and results
- benthic invertebrate survey methodology and results
- sediment and water sampling methodology and results
- sediment dispersion modeling results

2 Methods

2.1 Study Area Boundaries

The marine environment encompasses three study areas (see Figures 2-1 and 2-2). For consistency with Sections 7, 8 and 9 of Volume 6B of the environmental and socio-economic assessment (ESA), the study areas are referred to throughout this TDR as:

- the confined channel assessment area (CCAA)
- the project environmental assessment area (PEAA)
- the project development area (PDA)

2.1.1 Study Area for Existing Data Review

Whenever possible, existing data focusing on the CCAA were used to describe the marine fish and fish habitat. Broader searches for data were also completed within the Pacific North Coast Integrated Management Area (PNCIMA), also known as the Queen Charlotte Basin. This area covers 88,000 km², stretching from the northwest coast of Vancouver Island to the Canada–Alaska border.

Existing information on marine fish in British Columbia is generally restricted to species that have economic or fisheries value. The TDR focuses on representative species that were chosen based on these values as well as species that play an ecologically or culturally important role in the region. The literature search focused on existing relevant data available for fish species in the CCAA. The CCAA includes most of Fisheries and Oceans Canada (DFO) Fisheries Management Area (FMA) 6 (see Figure 2-3) – which includes all of Douglas Channel and extends out to the middle of Hecate Strait between the southern tip of Banks Island to the southern tip of Aristazabal Island—and Principe Channel in FMA 5 (see Figure 2-3). In the absence of data specific to this area, the study area was further expanded to include the North Coast, Hecate Strait and the Pacific Northwest.

2.1.2 Study Area for Field Surveys

Field surveys were conducted on the north coast of Kitimat Arm, between Kitimat Estuary and Bish Cove (within the PEAA and generally the PDA) as this was identified as the most likely location for the proposed Kitimat Terminal.

A 048334_NorthernGate

Fiscal/10483

iscal/1048334_NorthernGate

TDR_2009

2.2 Review of Existing Data Sources

The data review included searches for publications pertaining to marine flora and fauna within the CCAA and the PNCIMA. Existing data and information were accessed from peer reviewed scientific publications, electronic resources, agency literature and personal communication with government and academic professionals. The following databases were searched for relevant information:

- Canadian Institute of Scientific and Technical Information (CISTI)
- Fisheries and Oceans Canada WAVES catalogue
- Aquatic Sciences and Fisheries Abstracts
- Oceanic Abstracts
- Science Citation Index (Web of Science)
- BIOSIS (Biological Abstracts)
- British Columbia provincial publications
- National Technical Information Service (NTIS)
- National Oceanic and Atmospheric Administration (NOAA)
- Environment Canada publications

The Coastal Resource Information Management System (CRIMS) is maintained by the British Columbia Ministry of Agriculture and Lands (MAL) and provides access to all data currently held by the Ministry of Land and Resource Data Warehouse (LRDW). It contains a wide variety of data related to marine resources, such as aquaculture, shoreline classification and selected fisheries information. This database was searched for relevant information and data downloaded from the government FTP site (British Columbia Ministry of Agriculture and Lands 2006, Internet site).

2.3 Field Surveys

The purpose of the field surveys was to compile a species inventory and characterize baseline conditions at representative intertidal and subtidal habitats within the PEAA. The field surveys involved the following key components:

- completion of a reconnaissance survey of the PEAA by boat to identify habitat types along the shoreline
- identification of the most common and representative shoreline habitat types within the PEAA (e.g., estuary and rocky beach)
- characterization of the marine communities present in the PDA within each shoreline type in terms of species aggregation and distribution
- biophysical characterization of subtidal marine communities in the PDA
- sediment and water quality analysis in the PDA
- preparation of a list of locally abundant species

Twelve surveys were undertaken between July 2005 and August 2009 to collect biophysical data in the PEAA. Details on survey type, task, date and coverage are provided in Table 2-1.

Table 2-1Marine-related Field Studies, Personnel and Dates Undertaken in
the PEAA

Survey Type	Task completed	Date	Coverage	Biologists
Intertidal Habitat Characterization	Reconnaissance survey	July 2005	PEAA	Ben Wheeler, M.Sc. Jason Thompson, M.Sc. Owen McHugh, B.Sc.
	Transect survey	June 2006	PDA	Jason Thompson, M.Sc. Janine Beckett, M.Sc. Owen McHugh, B.Sc.
	Transect survey	July 2008	PDA	Janine Beckett, M.Sc. Todd Goodsell, B.Sc. Brock Ramshaw, B.Sc.
	Transect survey	August 2009	PDA	Colin Bates, Ph.D. Craig Losos M.Sc. Marine Winterbottom, M.Sc.
Subtidal Habitat Characterization	Qualitative subtidal survey	September 2005	PEAA	Foreshore Technologies Inc.
	Sediment and Water sampling	February 2006	PDA	Janine Beckett, M.Sc. Jason Thompson, M.Sc. Colin Bailey
	Benthic invertebrate sampling	February 2006	PDA	Janine Beckett, M.Sc. Jason Thompson, M.Sc. Colin Bailey Val McDonald, Ph.D. (Biologica Environmental) Trish Tomliens (Biologica Environmental)
	Quantitative subtidal video survey	June 2006	PDA	Barb Faggater, Ph.D. (Ocean Ecology) Ken Hall (Ocean Ecology)
	Quantitative subtidal video survey	June 2007	PDA	Barb Faggater, Ph.D (Ocean Ecology) Ken Hall (Ocean Ecology)
Nearshore Fish Survey	Beach seine	July 2005	PEAA	Jason Thompson, M.Sc Owen McHugh, B.Sc
	gillnet and longline	September 2005	PEAA	Jason Thompson, M.Sc Owen McHugh, B.Sc
Nearshore Crab Survey	Crab traps	September 2005	PDA	Jason Thompson, M.Sc Owen McHugh, B.Sc

All depths are measured in metres from chart datum. In Canadian tidal waters, chart datum refers to the lower low water, large tide (LLWLT; 0 m). Depths recorded from depth sounders on vessels have been adjusted to chart datum of 0 m. Water levels are measured from tide and water level regional station 9354 (Prince Rupert, British Columbia).

2.3.1 Intertidal Habitat Characterization

Intertidal surveys were completed during the best available low tide sequence in mid to late summer to ensure adequate coverage of all intertidal zones, and to capture a period of high productivity when seaweeds are most easily identifiable.

2.3.1.1 Reconnaissance Survey

An initial reconnaissance survey was designed to provide a qualitative overview of intertidal habitat types and to quantitatively identify general species composition (including rare or sensitive species), populations, and habitats in the PEAA. It was completed from a vessel travelling parallel to the shoreline at a slow rate of speed. An observer with a video camera filmed the shoreline as two other observers recorded GPS locations and the condition of the backshore.

2.3.1.2 Intertidal Transect Survey

Transect surveys provide quantitative information on species abundance and distribution within and adjacent to the intertidal habitat of the PDA. Transect survey methods were based on the Marine Foreshore Environmental Assessment Procedure established by DFO (DFO 2008a, Internet site).

Transect surveys were conducted every 50 to 100 m along the length of the shoreline within the PDA (the total length of coastal shoreline in PDA is approximately 2000 m). Transects were distributed along the shoreline to ensure adequate coverage of all habitat types identified in the qualitative intertidal evaluation.

At each transect location, a head stake was established at the highest high water mark (HHWM). A tape measure was deployed from the head stake directly seaward (perpendicular to shoreline) to the mean lower low water (MLLW) mark. In circumstances where tide levels were above the MLLW, the lowest point on the shoreline was selected. General physical and biological conditions were noted and photographed. The head stake was photographed both looking seaward and landward and its position recorded by GPS. The backshore zone was qualitatively documented and photographed.

Low, mid, and high intertidal zones were identified based on differences in animal and plant communities along each transect. The start and finish points of each zone were recorded from the transect tape and a clinometer was used to record the slope of each zone. The general substrate classification of each transect followed standard guidelines from Coastal/Estuarine Fish Habitat Description and Assessment Manual (Williams 1993):

- bedrock
- boulder (greater than 256 mm)
- cobble (64 to 256 mm)
- pebble (2 to 64 mm)
- sand (0.0625 to 2 mm)
- mud (mixed fine sand, silt, clay) (less than 0.0625 mm)

Physical data from each transect location was compiled to produce a cross-sectional shoreline profile showing substrate type, grade and dominant epibiota.

At each transect, three additional 25-m transect lines were placed (depending on the substrate gradient) parallel to the water line in the approximate middle of each intertidal zone. The midpoint of the three shore-parallel transects were placed on the shore-perpendicular transect, at the corresponding low, mid and high intertidal areas. Five sample positions were selected along each transect using random number tables (Figure 2-4). At each position, a 0.25 by 0.25 m quadrat was placed adjacent to the parallel transect line. At least one representative quadrat along each transect line was photographed. Observations were recorded for each quadrat and included data on:

- substrate type substrate type is identified based on Williams (1993) and recorded as percent cover per quadrat. Substrate types are cumulative and recorded as percentages out of a total of 100%.
- Marine plants marine plants are identified to genus or species level and abundance is recorded as percent coverage estimates per quadrat.
- Sessile animals non-motile animals (barnacles, mussels, sponges, etc.) are identified to species level and abundance is recorded as percent coverage estimates per quadrat.
- Motile animals individuals in each quadrat are identified to species level and counted; if numbers are too large to count (e.g., mites, amphipods), abundance is estimated per quadrat.

2.3.2 Subtidal Habitat Characterization

2.3.2.1 Qualitative Subtidal Survey

Surveys were completed in the PEAA at three sites: estuarine (Site 1), boulder beach (Site 2), and rock wall and bench (Site 3) (see Figure 2-5).

Substrate and biota information were collected visually by towing a diver on a sled just above the seabed. The sled was designed to allow the diver to work in a variety of conditions including low light, fast moving currents and poor visibility. A depth gauge and a set of dive planes allowed the diver to control the elevation at which the sled moved above the bottom. As the diver was towed along, the biophysical features were recorded using a two-way communication system. A surface technician recorded the diver's observations onto a Trimble data logger and simultaneously collected the UTM coordinates through a Differential Global Positioning System (DGPS).

Figure 2-4 Quantitative Intertidal Survey Methodology

2.3.2.2 Quantitative Subtidal Video Survey

Subtidal video surveys were carried out in the PDA by Ocean Ecology. The southern section of the PDA was surveyed in June 2006 and the northern section of the PDA was surveyed in June 2007.

A DGPS-positioned video camera was towed along transect lines (see Figure 2-6) to collect imagery of the seabed. Typical tow speed was between one and two knots. The camera provided a composite video signal to an overlay unit that stamped the DGPS position data (latitude and longitude), together with date and time, on each video frame. The video signal was also displayed in real-time on the vessel, where it was used to adapt the survey to particular features that were seen while underway. A daylight, colour-balanced underwater light was mounted on the camera to provide additional illumination when required.

The altitude of the underwater camera was controlled using a hydraulic winch. The winch was operated from the bridge, as was monitoring of the real-time video feed from the camera. Typically, the camera was towed about 1 to 3 m above the seabed in depths up to 119 m.

Sounding data (corrected for draft) were recorded every second and logged on a laptop computer. These data, combined with line angle measured at the block, were used to correct for positioning of the camera relative to the boat.

Nominal shore-perpendicular transect line spacing was 70 m. All shore-perpendicular survey track lines were continued inshore to a water depth of 3 to 5 m or to the limit of safe navigation. Several shore-parallel lines at different water depths were surveyed to provide multiple intersects or crossover points with shore-perpendicular lines. These were used to determine the confidence levels in the interpretation of the image data.

Classification and Mapping Methodology

Still images were captured from the raw video at one-second intervals. Data records for each image were produced including a classification by substrate and biota based on a method similar to that used by the British Columbia Land Use Coordination Office (LUCO).

Data were organized into geological and biological databases. The geological database contains information on substrate type and percentage cover. Anthropogenic features were mapped as part of the geological inventory. The biological database captured detail on seabed biota within two general categories, vegetation and fauna. Primary, secondary and tertiary faunal and floral types were evaluated for each image and given distribution codes. Vegetation coverage classes and faunal distribution classes were also recorded.

All data were entered into a relational database. Maps of species abundance and distribution were produced using ArcGIS software. Representative video images were captured in digital image files to illustrate seabed substrates and biota. These images were georeferenced to the ArcGIS biophysical maps on an interactive CD-ROM.

1048334_Northern Gateway_Presentation_

Survey Confidence Levels

Transect cross-over points were used to determine confidence levels in the interpretation of the image data. Each cross-over point consisted of a pair of data records, one from a shore-perpendicular transect and one from a shore-parallel transect. The number of times that both data records had the same values for each classification category (e.g., substrate, vegetation, and fauna) was recorded for each cross-over point and used to generate percentage confidence.

Bathymetry and Bottom Hardness Survey Methodology

Water depth and bottom hardness were recorded using a towed mapping sounder. Depth values from the sounder were corrected for transducer depth and tidal height, but not for changes in sound velocity due to depth-related changes in water temperature and salinity. This data set was imported into Surfer (contouring software) and contour plots were generated. The datum for the depth plot is lowest normal tides (LNT), consistent with Canadian hydrographic charts.

Substrate Maps

Substrate observations were mapped as a series of points in ArcMap. A hexagonal grid composed of hexagonal polygons with widths of 20 m was overlaid on the observation points. Each polygon was assigned a substrate code based on the code of the majority of the data points within that polygon. Polygons which contained no data points were assigned the code of the nearest neighbouring polygon.

Local Range Maps

Range maps for flora and fauna within the survey area were generated using the fixed kernel density estimation procedure. Flora observations were weighted by abundance (Table 2-2) and fauna observations were weighted by distribution (Table 2-3). In order to allow overlap of polygons between transects, the search radius (i.e., the smoothing factor) was set as the distance between transects (i.e., 80 m). For each organism, a 95% volume contour was generated. This contour enclosed the geographical area in which 95% of the estimated population was expected to be found.

Table 2-2Vegetation abundance classes

Code	Class	Abundance
0	None	No visible vegetation
1	Sparse	Less than 5% cover
2	Low	5 to 25% cover
3	Moderate	26 to 75% cover
4	Dense	>75% cover

Code	Class	Abundance		
1	Few	Rare (single) or a few sporadic individuals		
2	Patchy	A single patch, several individuals or a few patches		
3	Uniform	Continuous uniform occurrence		
4	Continuous	Continuous occurrence with a few gaps		
5	Dense	Continuous dense occurrence		
6		Code specific for school of fish		

Diversity Analysis Using Range Maps

Calculations of Shannon's diversity index, Shannon's evenness, and Simpson's dominance index were carried out in ArcMap using the range map polygons.

Species Richness Maps

A hexagonal grid (composed of hexagonal polygons with widths of 20 m) was overlaid on a shape file containing all the range map polygons for a particular category (e.g., flora or fauna). Using polygon-in-polygon analysis, each hexagonal polygon was assigned a number equal to the number of range map polygons with which it overlapped. This assigned number was equal to the species richness in a given hexagonal polygon, since each range map polygon represented a different species. The coded hexagonal polygons were used to generate a species richness map.

2.3.2.3 Sediment and Water Quality Survey

Baseline studies were carried out on sediment and overlying seawater near the marine terminal in February 2006. Ten sample sites and two reference sites in the PEAA were sampled (Table 2-4). Three sediment samples per site were collected using an 11 L Van Veen Grab designed to mechanically take an undisturbed sediment sample to a maximum depth of 60 cm over approximately 0.1 m² of seabed. Overlying water was collected from the top of each grab sample for chemical analysis and the top 7.5 cm of sediment was collected for chemical and particle size analysis and toxicity testing. Overlying water and sediment from the three grab samples were combined to produce one composite sample for water and one composite sample for sediment. Sediment samples were stored in 8-L buckets in the dark at 4°C and shipped directly to the laboratory for analysis. Water was separated into pre-labelled sample containers, stored at 4°C in the dark and immediately shipped for analysis.

The physical parameters analyzed in sediment samples included redox (oxidation-reduction reaction) potential, particle size, moisture content, total organic carbon and sediment thickness. Water samples were analyzed for temperature, pH, salinity and sulphide content.

The chemical parameters analyzed in sediment and water samples included ammonia, sulphide, metals, dioxins and furans, porewater, total polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene and xylenes (BTEX).

Results were compared to British Columbia, Canadian Council of the Ministers of the Environment (CCME) and Canadian Environmental Protection Agency (CEPA) guidelines where available. National Oceanic and Atmospheric Administration (NOAA) and Florida Department of Environmental Protection (FDEP) criteria were referenced when British Columbia or Canadian regulatory guidelines were not available.

	-	· · · · · · · · · · · · · · · · · · ·	
Water Sample	Date of Collection	Date of Arrival at Laboratory	Notes
SWQ-06-01	February 7, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-02	February 7, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-03	February 3, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-04	February 7, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-05	February 4, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-06	February 4, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-07	February 4, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-08	February 4, 2006	February 9, 2006	pH, salinity, S ⁻
SWQ-06-09	February 7, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-10	February 7, 2006	February 9, 2006	WC, salinity, pH, S ⁻
SWQ-06-11	February 7, 2006	February 9, 2006	pH, salinity, S ⁻
SWQ-06-12	February 7, 2006	February 9, 2006	WC, salinity, pH, S ⁻

Table 2-4	Seawater	Sample	Handling	Information

NOTES:

WC – dissolved metals, polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene and xylenes (BTEX), ammonia (NH_3)

S – Sulphide

2.3.2.4 Benthic Invertebrate Survey

Sediment samples for benthic invertebrate analysis were collected in February 2006 in conjunction with the sediment and water quality sampling program (Section 2.4.2.3). Benthic invertebrate samples were collected at six sites in the PEAA. Five replicate grab samples were collected at each site using an 11 L Van Veen Grab designed to mechanically take an undisturbed sediment sample to a maximum depth of 60 cm over approximately 0.1 m² of seabed. The top 15 cm of sediment from each grab sample was removed and gently washed through a 1 mm screen to remove silts and clays and to separate the sediment from the benthic organisms. All organisms and material remaining after washing was preserved in buffered 10% formaldehyde solution. Preserved samples were shipped to Biologica Environmental Consulting Ltd. for identification and quantification analysis.

2.3.3 Nearshore Fish Survey

Nearshore fish surveys were conducted in late summer 2005. Surveys involved the use of beach seines, gillnets and longlines to determine the fish species present in nearshore environments of the PEAA.

Fish sampling at Bish Cove was conducted under DFO licence number 2005-054 in August and September 2005. Intertidal and shallow subtidal areas were sampled using a sinking 14-m beach seine (10 mm mesh width). The net was deployed using a vessel transferring one end to a shore-based technician for each haul. Each site was seined one to eight times. All fish sampled were identified and then live-released at the collection point.

Subtidal fish habitat was sampled with 1-inch mesh gillnets. Samples were taken at two depths per site: benthic (just above bottom) and pelagic (25 m off bottom). Gillnets were set with floating buoys to facilitate easy location and checked after two hours to minimize fish mortality. All fish sampled were identified and standard length (SL) measured before being live-released at the collection point.

A 100-m longline, set with baited 35 circle hooks ranging in size from 6 to 7/0, was used to sample the deepwater habitat at three sites. The longline was set perpendicular to shore to sample varying depths at two sites and checked after two hours. Hooks were attached to a halibut clip with approximately 50 cm of 15 lb test monofilament line. Clips were attached to the longline at 3-m intervals. All fish sampled were identified and SL measured before being live-released at the collection point.

2.3.4 Nearshore Crab Survey

A crab trapping survey was completed in the PDA in late summer 2005. It was completed over a one-week period during the intertidal sampling survey. Collapsible, mesh, 1-m diameter recreational traps were baited with combinations of canned sardines and cat food and left to soak for four to six hours. The location of each trap was recorded with a handheld GPS unit. Upon retrieval, crabs were removed from the traps and species, sex, weight and carapace width were recorded. Crabs were live-released once data collection was completed.

2.4 Modelling

2.4.1 Sediment Plume and Dispersion Modelling Methodology

ASL Environmental Sciences Ltd. was contracted to use a 3-D coastal circulation and sediment model (COCIRM-SED) to compute the total suspended sediment (TSS) and sediment deposition in Kitimat Arm that would result from dredging operations at the Kitimat Terminal.

The COCIRM 3-D numerical circulation model has been widely used in coastal ocean and river applications over the past several years. A realistic numerical model domain was created for the full area of Kitimat Arm as well as Kildala Inlet. The model domain has a total length of 29.8 km and a width of 11.8 km. In the horizontal, the model has 100-m by 100-m grids over the full domain and, within 2 km of the Kitimat Terminal area, a high-resolution nested grid of 20 m by 20 m. The model has 20 layers in the vertical which span water depths from the surface to 360 m.

The model was used to compute the currents with forcing at the open boundary using tidal heights measured in March 2006 as well as with measured winds and river runoff. The release of sediments to the ocean during dredging operations is taken to be 1% of the total dredged sediments which is expected to require about 14.7 days of continuous operations. The distribution of the released sediments is taken from laboratory analyses of bottom sediment samples collected for the Project. The 3-D model was calibrated and validated using measurements collected from January to April 2006. Detailed methodology is included in the ASL report (see Appendix A).

3 Results of Baseline Investigations

3.1 Results from Data Review

3.1.1 General Review

Kitimat Arm and Douglas Channel are part of the Inner Pacific Marine Shelf ecoregion. These deep narrow fjords, with high coastal relief, are typical of the North Coast Fjord ecosection and contain protected waters with restricted water circulation. This causes low species diversity and low productivity due to poor water exchange and nutrient depletion. The water column is strongly stratified with respect to temperature and salinity. However, the combination of these factors can result in unique species assemblages in both the benthic and plankton communities (Government of British Columbia 2002). The tides in the region are semidiurnal, with large tides being approximately 7 m and the mean tide approximately 4 m. Douglas Channel receives an appreciable amount of freshwater runoff from melting snow at high altitudes. Peak discharge occurs between May and June. From late spring to fall, the Kitimat River creates a surface layer of freshwater in Kitimat Arm (DFO 1983).

Rocky shores dominate the intertidal habitat, accounting for 39% of the total shoreline of the PEAA and 76% of the CCAA shoreline. These include rock habitats with overlaying gravel, sand and boulders beaches. Estuarine shorelines with mud flats and marsh habitats compose 15% of total shoreline in the PEAA and 4% of the CCAA shoreline. The subtidal areas are dominated by sand and mud habitats, but predominantly mud (silt and clay).

Rockweed and sea lettuce (*Fucus* spp., *Ulva* spp.) are the dominant macrophytes in the intertidal zone. The dominant fauna found in this zone include barnacles, mussels, periwinkles and limpets. Species that can be found in the benthic community include sea urchins, moon snails, sea stars and the California sea cucumber. Estuaries may contain the marine vascular plant Eelgrass (*Zostera marina*). This species provides important habitat for juvenile fish, forage fish and a variety of invertebrates such as Dungeness crab. These soft bottom areas also contain commercially harvested bivalves such as butter clams and heart cockles.

A recent report on the state of knowledge of marine and shoreline areas in the Queen Charlotte Basin (LGL Limited Environmental Research Associates 2004) placed value on all the habitats in the PNCIMA. Resource and habitat themes were given relative values based on a number of sources including scientific and local knowledge. Douglas Channel and the outer islands have low-valued offshore benthic habitat when compared to the high-value area of Hecate strait (based on rockfish, groundfish and crab habitat) (LGL Limited Environmental Research Associates 2004), however, the nearshore subtidal habitats in these areas are high-valued (based on kelp, rockfish habitat, herring spawn, geoducks, urchins abalone, sea cucumber). All nearshore intertidal habitat (based on mud flats, sand flats, estuaries, eelgrass beds, intertidal bivalve habitat, salmon rivers and eulachon rivers) are also high value (as are all nearshore areas of the Queen Charlotte Basin) with the exception of the northwest portion of Graham Island due to its lack of sand, mud flats and estuaries. Intertidal diversity on a regional scale can be explained with abiotic variables such as salinity, temperature and fetch. Zacharias and Roff (2001) proposed that the outer coasts have higher diversity and would benefit more from conservation initiatives than the lower diversity inner coast environments.

Fish

Kitimat Arm and Douglas Channel support a fish assemblage typical of the North Coast Fjords and provide numerous economic opportunities for sports fishing operations. Fish habitat in the larger Queen Charlotte Basin is estimated to hold medium to high ecological value (LGL Limited Environmental Research Associates 2004). Salmon, eulachon, herring, rockfish, groundfish and their associated habitats are considered valued ecological components in the region (LGL Limited Environmental Research Associates 2004).

Approximately 300 species of fish live off the coast of British Columbia (Hart 1973). At least 42 of these species are known to occur in Douglas Channel near Bish Cove (Bell and Kallman 1976). Valued habitats for marine fish include spawning rivers, eelgrass beds, estuaries and pelagic habitat. Numerous rivers and associated channels branching off from Douglas Channel and Gardner Channel provide spawning habitat for salmon and eulachon (MacDonald 1983; Stoffels 2001; LGL Limited Environmental Research Associates 2004). Estuaries provide a rearing area for larval and juvenile fish, as well as an important transition zone and holding area for anadromous fish traveling in and out of the rivers. All six salmonid species are common in the area (sockeye, chum, coho, chinook, pink and steelhead) as are eulachon. These fish travel through Douglas Channel en route to freshwater spawning channels in Kitimat River, Gardner Channel and Kildala Arm.

Marine fish species and habitat in British Columbia are regulated by federal and provincial legislation including the *Fisheries Act*, *Species at Risk Act* and *Wildlife Act*. Legislation provides regulations and guidance for the sustainable use of fish resources and the protection of important marine habitat.

3.1.2 Fisheries Act

The *Fisheries Act* defines "fish" as fish, shellfish, crustaceans and marine animals. It prohibits harmful alteration, disruption or destruction of fish habitat including spawning grounds, nursery, rearing, food supply and migration areas on which fish depend directly or indirectly. The *Fisheries Act* operates under the principle of No Net Loss, which assures that unavoidable habitat loss is balanced with avoidance, mitigation and habitat replacement.

3.1.3 Species at Risk Act (SARA)

The Canadian *Species at Risk Act (SARA)* was established to provide for the recovery of species at risk due to human activity and to ensure that wildlife species of special concern do not become endangered or threatened (Government of Canada 2003). *SARA* prohibits killing, harming, harassing, capturing or taking species at risk. In addition, it makes it an offence to possess, collect, buy, sell or trade a listed species or to damage or destroy the residence of an extirpated, endangered or threatened species. DFO is responsible for all aquatic Species at Risk, including marine fish. For the marine species of concern that may be present in the CCAA, see Table 3-1.

Table 3-1Marine Fish and Invertebrate Species of Special Concern in the
CCAA

		Federal		British Columbia			
Common Name	G Rank ^a	SARA Status [♭]	COSEWIC Status ^c	S Rank ^d	Provincial Status ^e	Abundance in CCAA	
Northern Abalone	GNR	\checkmark	Т	S2	R	Medium	
Bocaccio	G4	+	Т	NR	NS	Unknown or low	
Green Sturgeon	G3	\checkmark	SC	S1	R	Unknown or low	
Notiteth Abalohe GNR V 1 SZ R Methodian Bocaccio G4 + T NR NS Unknown or low Green Sturgeon G3 V SC S1 R Unknown or low NOTES: 3 G Rank – global rank: G1 – critically imperilled G2 – imperilled G3 – vulnerable to extirpation or extinction G4 – apparently secure G5 – demonstrably widespread, abundant and secure. NR – unranked - Global Rank not yet assessed. ${}^{b}SARA$ status: \vee – listed in SARA Schedule 1 + – no status; under review ${}^{c}COSEWIC$ status: E – endangered – facing imminent extirpation or extinction T – threatened – likely to become endangered if limiting factors are not reversed SC – special concern – characteristics make it particularly sensitive to human activities and natural events a S Rank – subnational rank: B – indicates breeding status for a migratory species NA – conservation status rank is not applicable because the species is not a suitable target for conservation status rank is not applicable because the species is not a suitable target for conservation status rank is not applicable because the species is not a suitable target for conservation status rank is not applicable because the species is not a suitable target for conservation status rank is not applicable because the species is not a suitable target for conservation activities NR – not ranked S1 – Critically imperilled S2 – Imperilled S3 – Vulnerable S4 – Apparently Secure S5 – Secure "British Columbia status: R – red B – blue V – wellow							

Candidate *SARA* species are initially evaluated by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). COSEWIC assesses and classifies each species and ranks them according to their level of risk (extinct, extirpated, endangered, threatened, special concern, data deficient, not at risk). This initial assessment is given to the minister in charge who has 90 days to respond to the assessment. It is then up to the Governor in Council to decide if the species will be added to the species at risk list and receive federal protection. After an aquatic species is designated, it receives immediate protection and a recovery strategy is prepared that includes the identification of critical habitat (Government of Canada 2003).

Before the *SARA* was given royal assent in 2003, three lists of species had already been compiled by COSEWIC. All species on Schedule 1 were given immediate protection under *SARA* and this became the initial list of Wildlife Species at Risk (Government of Canada 2003). Before being considered for protection under *SARA*, species on Schedule 2 and Schedule 3 require reassessment by COSEWIC, based on a set of revised criteria. COSEWIC has since reassessed all of the species on Schedule 2 and 87 of the 103 species on Schedule 3. Once reassessed, species on Schedule 2 and 3 that are found to be at risk will undergo the *SARA* listing process.

3.1.4 Wildlife Act

Provincially designated species at risk are protected under the British Columbia *Wildlife Act*. This Act gives authority to the minister responsible to designate endangered and threatened species as well as wildlife management areas, critical wildlife areas and wildlife sanctuaries. Species are designated according to a ranking system developed by NatureServe, an international organization that tracks global biodiversity. The Red list contains species that have been legally designated as endangered or threatened in British Columbia under the authority of the *Wildlife Act*. Blue-listed species are not considered immediately threatened but are of concern because of factors rendering them vulnerable to human or natural disturbance (Vennesland et al. 2002). Yellow-listed species are generally not at risk and may be considered uncommon, common, declining or increasing, depending on the designated status.

3.1.5 Species-Specific Information

3.1.5.1 Salmonids, *Oncorhynchus* spp.

Introduction

Of the six salmon species indigenous to the Pacific Ocean, five are found in British Columbia's waters:

- chum salmon (Oncorhynchus keta)
- chinook salmon (Oncorhynchus tshawytscha)
- pink salmon (Oncorhynchus gorbuscha)
- sockeye salmon (*Oncorhynchus nerka*)

These five species comprise the mainstay of Canada's west coast salmon fisheries (recreational, commercial and food, social and ceremonial [FSC]). The commercial fishery for steelhead trout (*Oncorhynchus mykiss*) in the CCAA is closed. In addition to providing economic and social value to fishers, salmonids are an important food resource for terrestrial vertebrate predators and scavengers, thereby forming a critical link between terrestrial and aquatic systems (Willson and Halupka 1995).

General Salmonid Lifecycle

During the summer and fall months salmonids return to their natal streams to spawn. Once they have reached their spawning grounds, adult salmonids deposit thousands of eggs into gravel nests called redds. A single redd is dug by a female using her tail. As the female releases her eggs, they are fertilized by a waiting male that releases a cloud of milt. The female then covers up the nest with gravel to protect it from predators and then begins preparations for a second nest. This process is repeated several times until the female has expended herself of eggs. After having spawned, both males and females die; however, steelhead trout may in some instances survive to go back to sea.

After several weeks of incubation, the eggs begin to develop an eye. Over the period of a couple of months the embryo develops and hatches as an alevin. The alevin carries a yolk sac upon which it feeds for 2 to 3 months. During this time, the alevin remains hidden in the gravel where it benefits from protection from predators. When the nutrients in the yolk sac have been absorbed, the young must move into the water column to feed. At this stage they are considered to be fry. Salmonid fry either live in freshwater for a few months to a few years or migrate directly to the ocean; the exact behaviour is species-dependent. It is during the smolt stage that salmonids will migrate towards the ocean if they have not already done so during the fry stage.

Upon reaching the ocean, young salmonids stay close to the coastline where the coastal environment offers a rich food source and protection from predators. After an initial winter in coastal waters, the young salmonid adults move out into the open ocean where they will spend one to six years before returning to their natal streams to spawn. The duration of time spent at sea is species-dependent (see Figure 3-1 for an illustration of the typical life cycle of a Pacific salmon).

SOURCE: (DFO 2002)

Figure 3-1 General Overview of the Pacific Salmon Lifecycle

The primary salmonid species found within FMAs 5 and 6 are chum, pink, coho, chinook, sockeye, steelhead and cutthroat. A summary of each species is provided below, with particular emphasis on the characteristics and distributions that are unique to a given FMA.

Chum Salmon (Oncorhynchus keta)

Chum salmon, also known as dog salmon, have the broadest distribution of all salmon species, ranging from northern California to Alaska, as well as the Yukon and Mackenzie Rivers in the Arctic. In British Columbia, chum spawn in more than 880 streams and coastal rivers and are usually the last of the Pacific salmon to enter fresh water, generally spawning in winter. Spawning grounds for chum are generally restricted to the lower tributaries along the coast and they are rarely found more than 100 miles (160 km) inland (Hart 1973).

Adult chum salmon are distinguished from other Pacific salmon by their lack of distinct black spots on the dorsal side and caudal fin. In addition, they have 19 to 20 short gill rakers on the first arch. Adult chum average 3.5 to 4.5 kg and can measure more than 100 cm in length at maturity (DFO 2001).

Chum fry migrate immediately to marine waters upon emerging from the gravel spawning beds in the spring, 18 to 20 weeks after spawning (DFO 2008b, Internet site; Shared Strategy Development Committee 2009). As the fry migrate out of the streams and rivers they prey on insect larvae. This evolved life history reduces the mortality associated with freshwater environments; however, it does make chum more reliant on estuarine and marine habitats where the fry tend to aggregate close to shore in discrete schools during the first few weeks. During the initial weeks in salt water the fry continue to prey on copepods and *Oikopleura*. As adults, chum salmon principally eat euphausiids, squid, crab larvae and amphipods. The marine life history of chum is similar to other salmon species, with juveniles spending three to five years in the north Pacific before returning to spawn in their natal streams (Alaska Department of Fish and Game 1998; Shared Strategy Development Committee 2009). See Figure 3-2 for an illustration of chum in both the marine and spawning phases.

SOURCE: (DFO 2008b, Internet site)

Figure 3-2 Chum Salmon in Marine and Spawning Phases

The pale flesh and low fat content of chum salmon has rendered them the least commercially desirable salmon species found in British Columbia waters. However, because chum smokes well it is a favoured salmon for use by coastal Aboriginal people. The 2007 Salmon Stock Status Outlook (DFO 2007, Internet site) reported that a long-term, broadly based decline is evident among small and medium wild chum stocks in FMAs 5 and 6. In addition, brood year escapements have been relatively poor (DFO 2007, Internet site).

Pink Salmon (Oncorhynchus gorbuscha)

Of those salmon species found in the Pacific, pink salmon are the most abundant (DFO 2001). Pinks are the smallest of the salmon species, with adults averaging 1 to 2.5 kg in weight and 45.7 to 61 cm in length (Hart 1973). Despite their relatively small size, the migrations of pink salmon are extensive, ranging from California to the mouth of the Mackenzie River in the Northwest Territories, with primary spawning grounds between Puget Sound, Washington and Bristol Bay, Alaska (DFO 2001). Spawning occurs in a large percentage of coastal streams in British Columbia and in all the major rivers, with the exception of those along the south-eastern part of Vancouver Island (Hart 1973).

The lifecycle of pink salmon is relatively simple as all individuals have a fixed life span of 2 years (DFO 2001). Pinks return to their natal stream from July to October and while some travel a considerable distance upstream, the majority spawn in waters close to the ocean (DFO 2008c, Internet site). Favoured spawning areas include shallow riffles where flowing water breaks over coarse gravel or cobble-size rock and the downstream ends of pools (Alaska Department of Fish and Game 1994, Internet site). Deposited eggs hatch in late February and mature fry emerge from the gravel in April or May, depending on the water temperature (Hart 1973). Smolts then quickly migrate downstream to the open ocean where they undergo rapid growth. After 18 months at sea, adult pinks return to their natal streams to spawn and die. See Figure 3-3 for an illustration of pinks in both the marine and spawning phases.

SOURCE: DFO 2008a, Internet Site

Figure 3-3 Pink Salmon in Marine and Spawning Phases

Because of the fixed 2-year life cycle, odd- and even-year stocks are reproductively isolated and genetically distinct, even if they are spawning in the same stream. Frequently, in a given stream either the odd- or the even-year cycle will be dominant with respect to productivity (Alaska Department of Fish and Game 1994, Internet site).

The commercial fishery for pink salmon primarily consists of fleets of purse seines and gillnets, that operate in channels, bays and offshore. According to the 2007 Salmon Stock Status Outlook pink stocks in FMAs 5 and 6 have been strong, but variable over the last 10 years (DFO 2007, Internet site).

Coho Salmon (Oncorhynchus kisutch)

Coho salmon, also known as silver salmon, are distributed along the coasts of the North Pacific, originating in streams from California and the Sea of Japan north to the Bering Strait. These salmon are found in more than half of coastal streams in British Columbia and as a result there are more distinct coho populations than any other Pacific salmon species in British Columbia (DFO 2008d, Internet site).

Adult coho typically range from 45 to 60 cm in length and weigh from 2.7 to 5.4 kg (Hart 1973). With the exception of pink salmon, coho have the simplest life history of the west coast salmon species. From central British Columbia south, the general coho lifecycle consists of a 3-year cycle with approximately 18 months spent in fresh water and 18 months spent in salt water. The primary exception to this trend are "jacks", sexually mature males that return to spawn after only 5 to 7 months at sea. From central British Columbia north, although the exact transition zone is unknown, the majority of coho adults are 4 years old, having spent an additional year in fresh water before going to sea. It is during their last year of life that coho become sexually mature and ready to spawn. River entry and spawn timing show considerable temporal and spatial variability. Despite this variability, some regional patterns are observed (e.g., the farther north and the larger the river, the earlier in the season coho return to their natal stream). Most coho salmon in FMAs 5 and 6 enter rivers from summer to fall when water temperatures are most favourable and spawn during October to December. Spawning occurs in areas that have gravel deposits and low water velocity. Migration of coho smolts to sea generally occurs in the spring (DFO 2001). See Figure 3-4 for an illustration of coho in the marine and spawning phases.

SOURCE: (DFO 2008d, Internet site)

Figure 3-4 Coho Salmon in Marine and Spawning Phases

Juvenile coho are aggressive, vibrantly coloured fish that tend to favour small streams, sloughs and ponds, but can also be found in lakes and large rivers. A consequence of the territoriality for feeding grounds exhibited by coho fry is that a stream tends to produce the same number of smolts each year regardless of the number of eggs deposited in it (DFO 2008d, Internet site). In fresh water, juvenile coho feed on aquatic and aerial insects, plankton and occasionally small fish. In the ocean, coho first feed on euphausiids and other plankton and later move to squid, herring, sand lance and small fish (DFO 2001).

Adult coho salmon remain in surface coastal waters throughout their lives, although some have been recorded up to 1,600 km offshore (Hart 1973). The willingness of coho to take lures, coupled with their tendency to jump and dodge, makes them a favourite among sport fishermen. In addition, coho are caught in the Aboriginal food fisheries using traditional weirs, nets and gaffs. At present there is no directed commercial net fishery for coho; however, a substantial by catch occurs in gillnet and seine fisheries for sockeye, pink and chum salmon (DFO 2001).

According to the Salmon Stock Status Outlook for 2007 (DFO 2007, Internet site), some coastal mainland inlets in FMAs 5 and 6 remain sensitive because of poor marine survival. In 1997, the escapement shortfall was greatest in FMA 6 and detectable throughout the central coast. This event was thought to be due to abnormally poor marine survival of smolts entering the ocean in 1996. Escapement in FMA 5 has remained relatively stable since 1969; however the quality of the data for this area is considered poor (DFO 2001). Coho escapement to streams in the Kitimat area appears to have steadily decreased since the 1960s, which has led to conservation concerns for the area (DFO 2001). Currently, coho stocks in FMA 6 appear to be rebuilding as a result of conservation efforts; FMA 5 has not been reviewed (DFO 2007, Internet site).

Chinook Salmon (Oncorhynchus tshawytscha)

The largest of the Pacific salmon species, Chinook, can weigh up to 57 kg with a length of 147 cm (Hart 1973), but average about 6.75 to 25 kg. Chinook are found in a small number of British Columbia streams as the majority of the population originates from major river systems, the most important being the Fraser River (DFO 2008e, Internet site). Chinook are known to migrate across large distances and are found anywhere from 41°N to 60°N in the Pacific Ocean (DFO 2001). Due to the fact that chinook return to their natal streams earlier than other salmon species, they are frequently referred to as spring salmon.

Chinook are piscivorous with young feeding on small fishes such as sand lance, eulachon, herring, rockfish and smooth tongue. During later years, some chinook partake in lengthy feeding migrations where herring, sand lance, pilchard and rockfish are consumed (Hart 1973).

Of all Pacific salmon species, chinook has one of the most complex and diverse lifecycles (DFO 2001). The increased complexity is the result of the existence of two major lifecycle types: "ocean" and "stream". Many rivers have more than one stock of chinook, as spring, fall and winter runs take place (DFO 2008e, Internet site). Spawning of chinook generally occurs from August to December in the Fraser River, August to September along the south coast, October on Vancouver Island and in September along the north coast. After emerging from the gravel sometime between March and May, ocean-type fry will typically spend no more than 90 days in fresh water before migrating to the ocean. Between April and September, ocean fry congregate in shallow waters (estuaries, tidal flats and eel grass beds) where they mature to the smolt stage (Hart 1973). Stream-type fry spend their first 1 to 2 years in fresh water before

migrating to the sea. This freshwater residency is spent in either the natal stream or main stream of a tributary system (DFO 2001). Upon reaching the ocean, chinook salmon spend 1 to 6 years in the ocean before returning to spawn. The majority of returning spawners are 4 to 5 years old; however some can be as old as 7 years (DFO 2001). See Figure 3-5 for an illustration of chinook in the marine and spawning phases place.

SOURCE: (DFO 2008e, Internet site)

Figure 3-5 Chinook Salmon in Marine and Spawning Phases

Chinook stocks along the North Coast are primarily stream type; however, ocean types are present to a smaller degree (DFO 2001). Apart from the Skeena and Nass Rivers, the Kitimat River is the only river that supports a major chinook stock along the North Coast (DFO 2001). Generally, north coast chinook stocks are considered to be healthy; however, as of 1998 the Kitimat River was the only major stock to show a large decline in chinook escapement (DFO 2001). The 2007 Salmon Stock Outlook (DFO 2007, Internet site) classified chinook populations in FMAs 5 and 6 to be sensitive (DFO 2007, Internet site).

North coast chinook is harvested by commercial, sport and Aboriginal fishers in both Canada and Alaska (DFO 2001).

Chinook salmon, due to their large size, are particularly important to the sport fishery and are an important food source for Orca whales (DFO 2008e, Internet site).

Sockeye Salmon (Oncorhynchus nerka)

Sockeye salmon are found throughout the temperate North Pacific Ocean with primary spawning grounds extending from the Fraser River up to Bristol Bay, Alaska (DFO 2008f, Internet site). Sockeye vary in size depending on their age, with 4 year old fish averaging 3 kg and older fish running up to 5.5 kg (Wilderness Committee 1998, Internet site).

The majority of sockeye spawn in rivers that feed into lakes or in the outlets and spring fed beaches of lakes (DFO 2001). Some sockeye are known to spawn as far as 1,600 km from the ocean. In British Columbia, major spawning runs occur in the Fraser, Skeena and Nass Rivers, as well as in Rivers and Smith Inlets. The life history of sockeye can vary substantially depending on the run; however, in general, sockeye fry emerge from their gravel nests in the spring, spend 1 or 2 years in a freshwater nursery lake,

where they then migrate to the ocean and spend 2 or 3 years before returning to their natal streams to spawn (DFO 2001). As such, spawning sockeye is generally 5 and 6 years old; however, in some northern streams returning sockeye can be as old as 8 years. See Figure 3-6 for an illustration of sockeye in the marine and spawning phases.

SOURCE: (DFO 2008f, Internet site)

Figure 3-6 Sockeye Salmon in Marine and Spawning Phases

Sockeye salmon are unique among salmonids in so far that they exhibit cyclic dominance, a phenomenon that refers to cyclic fluctuations in abundance. Sockeye can mature at ages between 2 and 6 years old, but in most systems, one age group (usually 4-year-old fish) dominates (DFO 2008f, Internet site). As a result, the majority of offspring produced in any one brood year will return to spawn 4 years later. Approximately half of sockeye runs are known to have persistent 4-year cycles with a predictable dominant year cycle line every 4 years. During the dominant year, the run size is considerably larger than the other cycle lines (DFO 2001). To date, the exact nature of the physical and biological process that maintain these population cycles are poorly understood.

The Skeena River, of which the Kitimat River is a tributary, is second only to the Fraser River in its capacity to produce sockeye. A minimum of 70 distinct spawning sites and 27 lakes are currently in use by sockeye within the Skeena watershed. Skeena River sockeye smolts migrate to the ocean in late April through June, where they then move northward along the coast and offshore into the North Pacific (DFO 2001). Most Skeena sockeye mature at age four and five, although jacks commonly return at age three (DFO 2001). Returning sockeye enter Kitimat Arm from late June through to mid August, with a typical run peak around July 23. Spawning occurs in the area from late July to October; however, the exact time of the spawn in each spawning location is largely dependent of local water temperature regimes (DFO 2001).

Sockeye salmon is the most targeted salmon species; sought after by sport, commercial and Aboriginal fisheries due to its quality, high oil content and deep red flesh. The commercial sockeye fishery is the longest running commercial salmon fishery in the Pacific region dating back to the beginning of the 1870s (DFO 2008f, Internet site). Presently, the commercial fishery uses purse seine, gillnets and trolling gear. Aboriginal subsistence fishers' use traditional nets, weirs and gaffs, while sport fishermen use spoons or bait (DFO 2008g, Internet site). According to the 2007 Salmon Stock Outlook, the forecast for returning sockeye to FMAs 5 and 6 is uncertain due to limited baseline assessments and evaluations (DFO 2007, Internet site).

Steelhead Trout (Oncorhynchus mykiss)

Steelhead were at one time considered a trout species, but have since been identified by biologists to be more closely related to Pacific salmon than to other trout (DFO 2008h, Internet site). Steelhead trout range from southern California to the Alaska panhandle, with major spawning grounds in coastal rivers, streams, tributaries and major river systems between Oregon and northern British Columbia.

As steelhead mature, they begin to resemble Atlantic salmon in structure and appearance (DFO 2008h, Internet site). Steelhead can reach up to 114 cm in length and approximately 19.5 kg in weight, but generally average 3.6 kg (Hart 1973).

Steelhead can live up to nine years. They spend between 1 and 3 years in fresh water before becoming smolts. As smolts, they quickly migrate to the ocean in the spring, where they continue to develop in estuarine habitats. Generally, steelhead spend two or more summers at sea before returning to their spawning streams at the age of four or five. Steelheads return to fresh water in either the summer (summer runs) or winter (winter runs). Unlike other salmonid species, steelhead may return to sea after spawning (up to 20% of fish, most of which are female) (DFO 2008h, Internet site) and later return to freshwater to spawn for a second time. These repeat spawners are commonly referred to as kelts (DFO 2008h, Internet site). See Figure 3-7 for an illustration of steelhead in the marine and spawning phases.

SOURCE: (DFO 2008h, Internet site)

Figure 3-7 Steelhead Trout in Marine and Spawning Phases

While at sea, adult steelhead mainly feed on fish and various crustaceans. Young steelhead tend to feed on insects, euphausiid, copepods, amphipods, sand lance, eulachon, red devil, searcher, herring and smooth tongue.

Due to their threatened status, no commercial fishery for steelhead exists at present; however, a catch and release sport fishery is in effect. During the past decade steelhead abundance has declined to low levels as a result of poor marine survival and habitat degradation in freshwater systems. Steelhead stocks are depleted throughout British Columbia and as a result several recovery programs have been initiated by both provincial government departments and non-governmental organizations (British Columbia Conservation Foundation 2006, Internet site).

Cutthroat Trout (Oncorhynchus clarkii)

Cutthroat trout can be found in streams and lakes along the coast ranging from northern California to Prince William Sound off the Gulf of Alaska (Hart 1973). Two subspecies of coastal cutthroat trout are native to British Columbia, a coastal form (*Oncorhynchus clarkii clarkii*) and an interior land locked form (*Oncorhynchus clarkii lewisi*), also known as westslope cutthroat. The distribution of coastal cutthroat trout does not extend very far inland, usually less than 150 km (British Columbia Ministry of Fisheries and Habitat Conservation Trust Fund 1999, Internet site). Coastal cutthroat can be further classified into two subgroups, resident and sea-run. Resident fish remain in fresh water for the duration of their life, while sea-run cutthroat are anadromous, migrating to the ocean as smolts but returning regularly to fresh water as adults to feed, overwinter and spawn. This section focuses on the sea-run coastal cutthroat subspecies.

Sea-run cutthroat generally inhabit estuaries, tidal sloughs, marshes, or near shore waters, moving in and out with the tides as they feed. However, some sea-run have been observed to undertake extensive migrations up to 100 km from the mouth of their natal streams in search of food (British Columbia Ministry of Fisheries and Habitat Conservation Trust Fund 1999, Internet site). Adult sea-run fish can reach a maximum length of 68 cm and weight of 3.6 kg (British Columbia Conservation Data Centre [BC CDC] 2005, Internet site). See Figure 3-8 for a view of a sea-run cutthroat trout.

SOURCE: (University of Washington 2009, Internet site)

Figure 3-8 Sea-Run Cutthroat Trout

At the age of three to four, coastal cutthroat become sexually mature, at which point they are ready to spawn in their natal stream. Spawning occurs from February to May in small streams where the fertilized eggs are deposited in redds. Incubation of eggs lasts six to seven weeks and the fry then emerge from the gravel one week after they have hatched (BC CDC 2005, Internet site). Sea-run cutthroat generally migrate into saltwater in the late summer after having spent 2 to 3 years in fresh water (BC CDC 2005, Internet site). The exact timing of migrations, age at migrations, length of time spent at sea and spawning time vary among stocks and geographical areas. After spawning, adults return to the ocean where they remain until the succeeding spawning season. Cutthroat can live up to a maximum of 10 years, but few survive long enough to spawn multiple times due to pressure from anglers and natural predators (British Columbia Ministry of Fisheries and Habitat Conservation Trust Fund 1999, Internet site).

Coastal cutthroat are a predatory fish that feed on other fish such as coho, sticklebacks, rockfish, sculpins and flatfish (Hart 1973). During the salmon spawning season, adults are also known to eat loose salmon eggs (British Columbia Ministry of Fisheries and Habitat Conservation Trust Fund 1999, Internet site). While in the ocean cutthroat feed on small fish as well as crustaceans. Juvenile cutthroat feed primarily on insects (Hart 1973).

The life history of coastal cutthroat negates the possibility of a commercial fishery, as they do not venture far from shore. The recreational fishery on the other hand, is large and important. The present recreational catch limit is two trout (includes steelhead, Dolly Varden, cutthroat trout, brown trout and bull trout) per day. Although recreational fishing is permitted, the British Columbia government has blue-listed the costal cutthroat, indicating that the species is considered vulnerable in British Columbia (BC CDC 2005, Internet site). In an effort to help the cutthroat population in FMA 6, the Kitimat hatchery released approximately 10,000 fish in 2005 (DFO 2006, Internet site).

3.1.5.2 Eulachon, Thaleichthys pacificus

Eulachon are anadromous fish that range from the Southern Bering Sea to Northern California. They grow to approximately 22.9 cm and live to be 5 or more years old (Hart 1973) (see Figure 3-9). They were historically abundant in Douglas Channel and provided a source of food for local Aboriginal communities. They are provincially listed as a Blue species of concern due to localized rarity and recent sporadic spawning failures throughout British Columbia (BC CDC 2008a, Internet site).

SOURCE: (Alaska Fisheries Science Center 2008, Internet site)

Figure 3-9 Eulachon

Of the 30 to 40 spawning rivers known in British Columbia, only half of these support regular spawning events (Hay and McCarter 2000). Suitable spawning habitat is generally characterized by pronounced spring runoff from large snowpacks or glaciers into the rivers (Hay and McCarter 2000; Beacham et al. 2005). Spawning location is variable from year to year, but four rivers in the Kitimat area are known to receive some level of eulachon spawning. Rivers in the area that support consistent Eulachon spawning are Kildala River, Kitimat River and possibly other small channels off Gardner Channel (Hay and McCarter 2000). Gilttoyees Inlet and Foch Lagoon are also used on a more irregular basis (Hay and McCarter 2000). Limited spawning habitat combined with a low understanding of reasons for decline make the eulachon a species of concern.

Eulachon generally reach maturity at the end of their third year and migrate into the lower reaches of rivers and channels to spawn in early spring (Hay and McCarter 2000). Fecundity is related to the size of the female, but averages 25,000 eggs (Hart 1973). The eggs are sticky and adhere to sand grains on the river bottom. After three to five weeks, the eggs hatch and larvae are immediately swept out to sea with

the current. Larvae feed on copepod larvae and eggs, phytoplankton, mysids, copepods, ostracods and barnacle larvae. Juveniles and adults eat euphausiids and copepods. Concentrations of eulachon during spawning runs attract dogfish, sturgeon, halibut, cod, porpoise, finback whales, killer whales, sea lions and gulls that sometimes follow the eulachon migration (Hart 1973).

No commercial fishery for eulachon exists in British Columbia outside the Fraser River and harvest in the Kitimat area is limited to local Aboriginal communities. The eulachon has a high oil content that remains solid at room temperature. They are eaten fresh, smoked, dried or rendered down to grease that is used for food and bartering between Aboriginal communities.

Estimates of eulachon biomass are based on larval surveys and the offshore eulachon index in the Queen Charlotte Sound (McCarter and Hay 1999; DFO 2005). Population decline of eulachon across most of British Columbia in the 1990s was followed by non-existent runs in Douglas Channel from 1998 to 2000 (Hay and McCarter 2000). Biomass has since increased steadily with the largest abundance estimate recorded in 2003 (4,366 tonnes) and subsequent declines in 2004 (1,176 tonnes) (DFO 2005).

3.1.5.3 Pacific Herring, *Clupea harengus pallasi*

Pacific herring are small, schooling fish that are found in inshore and offshore waters ranging from California to the Beaufort Sea (Hart 1973). In British Columbia, herring are common to most areas and support several modest commercial fisheries. These fisheries include a food and bait fishery, spawn on kelp fishery and a herring roe fishery (DFO 2001).

Pacific herring grow to approximately 25 cm and can live up to 15 years (see Figure 3-10).

SOURCE: (Washington State Department of Fish and Wildlife 2001, Internet site)

Figure 3-10 Pacific Herring

Herring become mature between the ages of two to five, at which point they recruit to the spawning stock, which form annual spawning aggregations along the coast (Hart 1973). Fecundity, the reproductive capacity of a female fish, is correlated with size; however, females generally lay between 9,000 and 38,000 eggs. The eggs form sticky mats, which adhere to seaweed and substrate between the high tide level and 11 m depth. Large aggregations of spawners ensure a high rate of fertilization success.

Mature herring partake in annual feeding cycles that coincide with spawning events. As the spawning condition approaches in the fall, herring begin to fast and concentrate energy into the production of eggs. Once spawning is complete, they begin feeding again to replenish fat and stored oil. Large schools of herring provide a valuable food source for salmon, seals, sea lions, dogfish, lingcod and whales (Hart 1973).

Herring eggs are subject to high rates of mortality from predation and turbulent weather that can dislodge them from their protective substrate. Eggs hatch after 10 days and recently emerged larvae immediately begin to feed on invertebrate eggs, copepods and diatoms. After two to three months, herring larvae begin to form schools and display a diurnal vertical migration where they generally move to deeper waters during the day and rise to the surface at dusk to feed. In the fall, larval schools migrate to deeper water, where they will remain until the age of two or three. During this interim period there is little evidence of any juvenile activity in inshore waters.

The Kitimat Arm supports a resident population of herring that do not contribute to the larger, migratory stocks of Hecate Strait and coastal British Columbia. The herring population in the upper reaches of Kitimat Arm is small and relatively slow growing. Although in general the herring of Kitimat Arm are resident and do not emigrate from the area, evidence suggests that they undertake a post-spawning migration to the mouth of the inlet (Triton 1993). Information on known spawning areas for herring is available from the British Columbia Coastal Resource Information System (ILMB 2007, Internet site) and shown in Figure 3-11.

Spawning locations in Douglas Channel vary from year to year, but generally include Kitimat Arm, the Southwest side of Hawkesbury Island and Hartley Bay where high concentrations of herring gather in the spring to spawn. Spawning occurs locally along the foreshore between Kitamaat Village and Minette Bay, in Clio Bay, Kildala Arm and on Coste Island. Within the Kitimat fjord complex, spawning beds are on both sides of Douglas Channel, on the west side of Ursula Channel and on the south side of Coste Island. Adult Pacific herring are also found in Kitkatla Inlet, just north of Browning Entrance and in Kitasu and Weeteean Bay south of Caamaño Sound. The average spawning period is 4 days. The Kitimat Arm Pacific herring population spawns in Minette Bay, south of Kitamaat Village where eggs attach to rockweed, the dominant cover (Triton 1993). This population spawns in March through April, between the high tide watermark and 11 m depth with a mean spawning date of March 25 (Hay et al. 1989). Juvenile Pacific herring are known to rear in the upper end of Kitimat Arm, including Minette Bay.

There are five major herring stocks in British Columbia's coastal waters: Prince Rupert District, Central Coast, Queen Charlotte Islands¹, west coast of Vancouver Island and the Strait of Georgia. Herring in the PEAA within Douglas Channel are assumed to belong to the Central Coast stock that extends from the southern tip of Banks Island south to Johnstone Strait (DFO 2001). Herring stocks are known to fluctuate rapidly, but due to strong recruitment of the 1994 and 1995 age-classes, Central Coast stocks are currently considered to be at healthy levels (DFO 2001).

¹ In December 2009, the Queen Charlotte Islands were renamed Haida Gwaii. The previos name is retained for consistency with reviewed literature.

3.1.5.4 Rockfish, Sebastes spp.

Rockfish are generally limited to the west coast of North America with the exception of a few species that live in the North Atlantic, South Pacific and South Atlantic. There are 35 species of rockfish that live in British Columbia coastal waters (Love et al. 2002). Rockfish most likely to occur in the PEAA include species collectively referred to as the inshore rockfish assemblage: copper, quillback, china, tiger and yelloweye rockfish (see Figure 3-12). Other species may be present in the PEAA, but at lower numbers and densities. Inshore waters provide suitable habitat for juvenile rockfish including the threatened Bocaccio. Numerous other species of rockfish are likely to occur in the larger CCAA, depending on depth and substrate.

SOURCE: (Alaska Fisheries Science Center 2008, Internet site)

Figure 3-12 Inshore Rockfish Species – Copper and Tiger Rockfish

Rockfish mature between 1 and 20 years and can live between 20 and 118 years, depending on species. Eggs are fertilized internally and females bear live young after 1 to 2 months gestation. Fecundity is positively correlated with size. Larvae are released between February and June and spend 3 to 6 months in the pelagic phase feeding on copepods and invertebrate eggs. Larval rockfish are generally found in the mixed layer and thermocline. Pelagic larvae are the most sensitive phase of the rockfish life cycle, and their survival is critical to overall reproductive success (Love et al. 2002). Variable oceanic conditions (upwelling intensity, food supply and water temperature) result in naturally fluctuating survival rates of rockfish larvae from year to year. Juveniles settle to the bottom where they begin feeding on bottom dwelling shrimp, crab, small fish and amphipods. Adults feed on crab, shrimp, invertebrates and other fish. Most of the inshore species actively feed at dusk and dawn and often take cover at night.

Preferred rockfish habitat includes rocky outcrops that provide complex substrate and cover in crevices, caves and rock ledges, in addition to vertical structure such as kelp forests and macroinvertebrates. Yelloweye and Tiger rockfish are often associated with boulder fields. Various life stages of rockfish species can be found in nearshore habitat both subtidally and intertidally.

All species of rockfish are of some concern in British Columbia because of their status as a popular recreational sport fish and life history characteristics that make them vulnerable to population decline and difficult recovery. Rockfish populations are in decline in some areas of the province where recreational fishing pressure and bycatch mortality are high. There is no evidence that rockfish populations in Douglas Channel are in decline (Reagan 2006, pers. comm).

Bocaccio (Sebastes paucispinis)

The bocaccio is one of 35 species of rockfish that live in British Columbia coastal waters. It is a large fish that can reach lengths of up to 90 cm and has an average weight of 7 kg (see Figure 3-13). Its range extends along the west coast of North America from Baja California to Alaska, but very little is known about its distribution in the northern and central coast of British Columbia. Projected habitat models identify Caamaño Sound as potential habitat based on known depth preferences of bocaccio (Stanley et al. 2004). Recreational catch statistics indicate records of bocaccio caught in DFO FMA 6, but not within the PEAA (encompassed by Subarea 6-1; Marine Fisheries Technical Data Report [Triton 2010]). Records of bocaccio caught in inlets in the Strait of Georgia indicate that there may be suitable habitat in the fjords of the northern coast, especially for juveniles that tend to reside in nearshore areas until they reach maturity at four to five years of age. Like most rockfish, bocaccio suffer high mortality when caught as bycatch due to overexpansion of the swim bladder. Estimates report that bocaccio stocks in Canada have declined 90% in the past 10 years (Stanley et al. 2004).

Due to apparent major declines over the past two decades and a lack of biological information specific to the Canadian population, this species is currently under review to be designated as threatened under Schedule 1 of *SARA*.

Adults are semi-pelagic and can be found in depths of 60 to 340 m. Most of the biological and abundance data were collected from work done in California and from bycatch statistics from the commercial fishery in Canada. They are commonly recorded as bycatch in association with Pacific ocean perch, yellowtail rockfish and canary rockfish (Stanley et al. 2004).

SOURCE: (NOAA 2009, Internet site)

Age estimates based on otoliths suggest that bocaccio can reach 40 years of age. Sexual maturity is reached at 4 to 5 years. Copulation occurs in early fall but fertilization is delayed. Fecundity is based on female size but ranges from 20,000 to 2,300,000 eggs. Embryonic development takes approximately 1 month. Larvae hatch within the female body and are retained until the larvae are partially developed. In British Columbia, young are released in the winter. Larval and juvenile bocaccio are pelagic and often occur near the surface of nearshore waters. Between 3 and 5 months, juveniles settle to the bottom and begin to school. Larvae metamorphose over several months and settle to littoral and demersal habitat in late spring to summer. As they grow older, they continually move into deeper water and become more sedentary. The largest and oldest bocaccio are sedentary and live in deep crevices or caves.

The diet of juvenile bocaccio includes invertebrate larvae, pelagic shrimp, young rockfish, surfperch, mackerel and other small inshore fish (COSEWIC 2002). Adults feed on other rockfish, sablefish, anchovies, lantern fish and squid.

3.1.5.5 Surf Perch

There are four species of surf perch that potentially live in the CCAA — shiner perch, pile perch, striped sea perch and kelp perch. They belong to the family *embiotocidae* whose distribution in North America extends from Alaska to Baja California (Lane et al. 2002). None of the four species in the area is considered rare or threatened. The kelp perch is restricted to kelp forest habitat that occurs on the exposed sides of the Estevan Group Islands and Caamaño Sound. The shiner and pile perch are commonly found in piling habitat around wharves as they are attracted to prey that is concentrated on marine infrastructure (Lane et al. 2002). Striped seaperch can also be found in piling habitat but are usually associated with rocky bottoms or rack faces (Lane et al. 2002). They feed primarily by grazing on pilings or benthic habitat for amphipods, isopods, shrimp, mussels, barnacles and fish eggs (Lane et al. 2002).

Surf perch are viviparous fish with delayed fertilization to ensure optimal habitat requirements for broods of live young. Due to the increased energy expenditure on development of their young, surf perch have low fecundity and are slow to recover after a decrease in population (Lane et al. 2002).

Surf perch are an important part of nearshore fish assemblages and provide a small recreational fishery throughout British Columbia. Fishing records from the Kitimat area indicate that surf perch form a very small proportion of the total recreational catch (Lane et al. 2002). Common predators include sea birds, river otters, seals, sea lions and large fish (rockfish and lingcod) (Hart 1973).

Shiner Perch

Shiner perch are common in marine and estuarine waters and are able to tolerate salinity ranges of 0 ppt to 35 ppt. They reach an average size of 10 to 11 cm and live up to 6 years (Lane et al. 2002). In the summer, schools of shiner perch are attracted to eelgrass beds, wharves and pilings where they feed on small invertebrates, copepods, tunicates and fish eggs. They often disperse into deeper water in the winter and have been recorded at depths up to 146 m (Lane et al. 2002).

Sexual maturation occurs at age 1, and after mating in April to July, females store sperm until fertilization occurs in the winter (Hart 1973; Lane et al. 2002). After 5 months gestation, 4 to 20 live young are born in May to August (Hart 1973) (see Figure 3-14).

SOURCE: (NOAA and US Department of Commerce 2001, Internet site)

Figure 3-14 Shiner Perch

Pile Perch

Pile perch are the largest and longest-living surf perch sub-species in British Columbia (Lane et al. 2002). They aggregate all year and are often found near the bottom (less than 74 m) where they feed on gastropods, mussels and decapod crustaceans (Lane et al. 2002). Females mature at 4 to 10 years. Fecundity is related to female size and they generally produce 18 to 52 young. In British Columbia, live young are usually released in August after a 5-month gestation period (Hart 1973) (see Figure 3-15).

SOURCE: (DFO 2009, Internet site)

Figure 3-15 Pile Perch

Striped Seaperch

Striped seaperch reach an average length of 13 to 22 cm and live an average of 7 years. They are generally solitary, but are often found in loose aggregations, especially during breeding season in the late fall and early winter (Lane et al. 2002). They require high salinity water which restricts them to marine habitat, but they are sometimes found in the lower reaches of estuaries. Females mature at 2 to 3 years of age and release an average of 18 to 22 live young in June and July (Lane et al. 2002) (see Figure 3-16).

SOURCE: (Alaska Fisheries Science Center 2008, Internet site)

Figure 3-16 Seaperch

3.1.5.6 Threespine Stickleback, Gasterosteus aculeatus

Threespine stickleback are a small (less than 10 cm) fish that have a large range throughout the Pacific and Atlantic oceans. In the Pacific Ocean, they are found from Baja California to the Aleutian Islands and from Kamchatka to Korea (Hart 1973). They are found in freshwater lakes and streams as well as nearshore and offshore marine environments. They are distributed throughout British Columbia and show great variation in body form and ecology (Hart 1973) (see Figure 3-17).

SOURCE: Photo by Noel M. Burkhead (USGS 2009, Internet site)

Figure 3-17 Threespine Stickleback

They are characterized by a first dorsal fin that is modified into three serrated spines, and a first pelvic fin that is also a modified spine. A variable number of bony plates form armour on each side; populations in marine environments generally have the highest number of plates (Hart 1973). Colour is variable depending on habitat and ranges from silvery green to deep bluish-black. Several specific populations in British Columbia are designated as endangered by the Federal *Species at Risk Act* due to independent evolution into limnetic and benthic populations, however, the stickleback populations in Douglas Channel and associated marine waters are not federally listed (Government of Canada 2005, Internet site). The province of British Columbia lists stickleback populations in the province with a yellow designation (not at risk) (BC CDC 2008b, Internet site).

In marine and estuarine habitat, stickleback generally school in eelgrass and around wharves and pilings, but can also be found further out to sea (Hart 1973). They mature at one to two years old and generally migrate to freshwater to spawn in spring and early summer. Males build nests on the substrate out of plant material where one to several females deposit eggs. The male guards the eggs until they hatch approximately seven days later (BC CDC 2008b, Internet site). It is presumed that stickleback can live to four years of age and die after they breed. They feed on copepods, euphausiids, crustacean larvae and small fish (Hart 1973).

3.1.5.7 Pacific Halibut, *Hippoglossus stenolepis*

Halibut are an important sport and commercial fishery on the northern coast of British Columbia. They are laterally compressed, bottom dwelling flatfish that grow up to 267 cm and can weigh upwards of 56 kg (Hart 1973) (see Figure 3-18). According to interviews with local fishermen and historical records (Bell and Kallman 1976), halibut are a common food fishery in the CCAA and have been found in Douglas Channel, Gardner Channel, Sue Channel and Ursula Channel (Bell and Kallman 1976).

SOURCE: (Alaska Sealife Centre 2009, Internet site)

Figure 3-18 Pacific Halibut

Females are generally larger than males and mature later (Hart 1973). Mature adults migrate up to 1,600 km from shallow summer feeding grounds to deeper spawning grounds in the winter (Hart 1973). Spawning usually occurs from November to January at 275 to 412 m depth. Large females lay 2 to 3 million eggs between 40 to 935 m deep. Newly hatched larvae are usually found below 200 m. They remain pelagic for 4 to 5 months, feeding on plankton. At 3 to 5 months, they are carried inshore by surface currents and settle to the bottom as juveniles. Before settling, the bilaterally symmetrical young

transform into the adult, laterally compressed form and one eye migrates to the other side of the head (Hart 1973). Juveniles remain in nearshore habitat where they feed on krill and small fish. At 5 to 7 years, juveniles move offshore to deeper waters where they become opportunistic feeders on cod, sablefish, Pollock, other flatfish, herring and octopus (Hart 1973).

Douglas Channel falls within statistical area 2b under the management of the International Pacific Halibut Commission. Stocks in this area are reasonably healthy with good average recruitment (DFO 2009).

3.1.5.8 Mussels, *Mytilus* spp.

The dominant intertidal species seen in this region is the bay mussel (*Mytilus trossulus*) or foolish mussel, which is part of the *M. edulis* complex that includes blue mussels (*M. edulis*) and Mediterranean mussels (*M. galloprovincialis*). The bay mussel is native to the Pacific Northwest and dominates the hard shoreline of the sheltered coasts of British Columbia (Gosling 1992).

Mussels occur in a diverse group of habitats including hard rocky shores, gravel and cobble substrata, and soft sediment shores in protected habitats. The grouping behaviour of mussels results in the formation of a complex network of structures that allow many other organisms the opportunity for settlement and protection.

The vertical distribution of mussels in the intertidal is controlled through both abiotic and biotic factors. Mussels are primarily found in the upper midlittoral into the lower midlittoral zone but can be found down to 40 m on docks and pilings. Temperature is known to adversely affect mussels and act in combination with desiccation to set the upper limits of mussel distribution. The lower limit is principally determined by biological factors such as predation and competition from other sessile organisms (Connell 1972; Paine 1974). Crabs, seastars, birds and otters are the organisms most commonly responsible for crab disturbance. However, due to the low diversity in this system, abiotic disturbance is likely more important, such as logs impacting the shore and creating gaps. This is probably also an important process in the CCAA as there are large amounts of woody debris in the system. Mussel beds are known to be resilient to the effects of physical and biological disturbances and full recovery usually occurs. *M. trossulus* is found far into the estuary as it can tolerate both full oceanic salinity of 35 parts per thousand (ppt), as well as very low salinity conditions of 6 to 7 ppt (Gosling 1992).

Mussels are active suspension feeders consuming bacteria, phytoplankton, detritus and dissolved organic matter (DOM). Particles are sorted across the gills and unwanted particles are expelled as pseudofaeces. Bivalves generate turnover of nutrients and organic carbon in estuarine and coastal environments by transferring phytoplanktonic primary producers to secondary production.

These bivalves are broadcast spawners and release sperm and eggs into the water simultaneously over a prolonged period, from summer to fall. The veliger larvae will live as plankton for several weeks after fertilization. They will then metamorphose to a pediveliger, develop a foot and settle to hard substrate on the bottom. These larvae then metamorphose again into a juvenile and start to develop a shell. At this stage they are still mobile and able to search for primary attachment substrate. A mature mussel can move after settlement by using its foot and byssal attachments to pull itself to new locations.

Mytilus edulis larvae will preferentially settle on filamentous algae (Seed 1969) and onto byssal threads that would settle them directly into adult mussel beds (Eyster and Pechenik 1987). The bay mussel will quickly colonize open patches in intertidal areas (Dayton 1971) and is considered a pioneer species. The competitively superior *M. californianus* eventually displaces *M. edulis* from areas where both species are found together (Paine 1974).

3.1.5.9 Dungeness Crab, *Cancer magister*

Dungeness crab (Figure 3-19) are found from San Francisco to the Aleutian Islands in Alaska. They are widely distributed in the subtidal environment and prefer a sandy or muddy bottom in salt water. However, they are tolerant of salinity changes and can be found in estuarine environments, which are often used as nursery grounds. The crabs are generally in waters shallower than 15 fathoms (27 m), but they have been found in depths down to 100 fathoms (183 m) (Alaska Department of Fish and Game 1985).

SOURCE: Janine Beckett, Stantec

Figure 3-19 Dungeness Crab

Mature female crabs typically moult between May and July. Mating occurs during May to August between hard-shelled males and soft-shelled newly molted females. This mating occurs outside of estuaries in nearshore environments. In October and November the eggs become fully developed and are extruded and fertilized. Between January and March, the larval crabs hatch and become planktonic. The female is often buried in substrate between the time of fertilization and release of larvae, which is about 2 to 3 months. In comparison to other crab species such as King Crabs, which brood their eggs for approximately a year and are vulnerable during this time, Dungeness crabs are vulnerable for a relatively short period of time. Approximately 1 year after hatching, around May and June, the larvae metamorphose and settle to the bottom. Juveniles reside in shallow coastal waters, tidal flats and estuaries, living in beds of eelgrass and other aquatic vegetation. These juvenile crabs do not move from their settlement area for several months at which point they move into deeper water as they grow larger. They reach sexual maturation after a further two years, and legal harvest limits (165 mm) typically a year following that. Studies suggest that growth is greater in estuaries than in other nearshore habitats. This may be due to higher temperatures and more abundant food sources.

Dungeness crab can recruit in very large events and the larvae are an important food source for Pacific herring, Pacific sardines, rockfish and chinook salmon. Dungeness crabs feed primarily on fish, shrimp, molluscs and crustaceans.

Abundance fluctuates greatly from year to year due to changes in oceanic conditions. This makes management difficult and is not based on population assessments. The fishery is managed by the "3-S" system, which refers to size, sex and season. The primary management tools used for this fishery are a minimum size limit (165 mm), limited entry and gear and fishery closures. The minimum size limit helps to limit mortality of the undersized female in order to safeguard reproductive potential.

There is no source information regarding specific crab habitat. Therefore, fisheries data are used to determine areas of primary crab habitat. There are areas of high valued crab habitat in Douglas Channel (LGL Limited Environmental Research Associates 2004). This does not include Kitimat arm.

3.1.5.10 Sea Cucumber, Parastichopus californicusc

The California sea cucumber is distributed between the Gulf of Alaska to Baja California, Mexico. It is found in the low intertidal zone down to 90 m. Previous studies have shown that 70% are found above the 20-m-depth mark (Woodby et al. 2000). The species is most common on bedrock in areas with little current where detritus accumulates. They also live on gravel, shell, sand or mud and often in eelgrass beds. Densities are highest on shell and gravel and lowest in mud and silt (larger individuals are found in mud and silt) (Woodby et al. 2000). This species is an epifaunal deposit feeder, acting as a bioturbator that reworks and redistributes sediment in the process of feeding. The impact of sea cucumbers on sediments is a function of their specific feeding activities and lifestyles. Aspidochirotids (including *P. californicaus*) decrease the stability of the sediment surface. This would be compared to, for example, dendrochirotids that facilitate the accumulation of bound organic matter on the sediment surface (Gebruk et al. 2000).

At approximately 4 years of age they reach sexual maturity and migrate to shallow waters. Sea cucumbers cease feeding and become dormant from September to early March. Sexes are separate and spawning usually occurs from late April to August, but this timing varies with location. Spawning events usually occur in waters less than 16 m in depth and fertilization occurs in the water column (Cameron and Fankboner 1989). Larvae drift as plankton for 2 to 4 months, then settle and develop into juveniles. These juveniles usually find refuge in macroalgae holdfasts, dense mats of filamentous red algae, under rocks or in rock crevices (DFO 2001). Adults may reach 500 mm and may live to over 8 years. Adults are reported to undergo seasonal migrations, although no notable data have been put forward to support this hypothesis (Campagna and Hand 2004). Sea cucumbers cannot be aged and as a result, growth rates, age at sexual maturity, longevity are often difficult to determine.

There are limited data on sea cucumber specific habitat as the fishery is still developing. Biomass estimates for the British Columbia coast have historically been based on surveys from Alaska (Campagna and Hand 2004). A recent paper compiled all surveys in British Columbia and attempted to create baseline density estimates. The suggested density that is used for areas with favourable conditions for cucumbers is 5.08 c/m-s (cucumbers per metre of shoreline). For areas where habitat is marginal the old density of 2.54 c/m-s is used.

The CRIMS database shows no fisheries resources in the CCAA. However, the commercial and recreational fisheries surveys found that there are fisheries for sea cucumber in the CCAA.

3.1.5.11 Cockles, *Clinocardium nutalli*

Cockles (also known as Nutall's Cockle) are distributed from California to the Bering Sea. They are found ranging from the intertidal zone to deep water. Cockles are common on many of the beaches of the north coast (Gillespie and Bourne 2000). They typically are found on beaches with sand and mud substrate fringed by eelgrass beds.

Cockles are often buried to very shallow depths because of their short siphons and therefore are easily harvested by sport diggers at low tide. Cockles on the British Columbia coastline spawn between July and August and the larvae are planktonic. Cockles are rapid burrowers using both the hydrostatic pressure in the foot and the valves of the shell to dig. The muscular foot can also be used to move on the surface with a lunging motion.

Commercial landings are incidental to landings of the four major commercial species: Butter clams, littleneck clams, manila clams and razor clams (Gillespie and Bourne 2000). Cockles are in important traditional food for the Aboriginal groups in the region. The value of commercial bivalve resources in the Douglas Channel system is low and Kitimat arm has no commercial bivalve resources, most likely due to water and sediment pollution (LGL Limited Environmental Research Associates 2004).

3.1.5.12 Periwinkle, *Littorina sitkana*

The periwinkle (also known as the Sitka periwinkle) is a common gastropod on sheltered shores ranging from Alaska to Puget Sound, Washington (Harbo 1999). This small grazer is often associated with rockweed beds but can have an unpredictable distribution. Some shores find this species distributed throughout the intertidal zone, while on other shores it is found limited to damp crevice refuges within the high intertidal zone. The distribution of most intertidal animals is a balance between the biotic and abiotic factors at play. Researchers have suggested that periwinkle distribution is linked to variability in predator abundance (Behrens Yamada et al. 1998). This would imply a trade-off between the increased risk of predation at lower levels and the reduced fecundity higher on the shore (due to lower nutrition). The dominant predators in this system would be crab and starfish, which are limited in their vertical distribution by desiccation stress (Behrens Yamada et al. 1998).

3.1.5.13 Marine Riparian Vegetation

Marine riparian systems are areas on land bordering tidewater and constitute the interface between terrestrial and aquatic ecosystems (Brennan and Culverwell 2004). These systems may include vegetated or non-vegetated areas shoreward of the higher high water, large tide (HHWLT). They are distinguished by gradients in biophysical conditions, ecological processes and biota (National Research Council 2002). They include those portions of terrestrial ecosystems that significantly influence exchanges of energy and matter with aquatic ecosystems.

Most riparian research has been done on freshwater systems and information available on marine riparian vegetation and associated biota is limited. However, evidence suggests that marine riparian vegetation plays a major role in fish health by providing habitat for feeding and spawning. It also likely plays a key role in stabilizing the upper shore by minimizing and filtering freshwater runoff into the nearshore marine ecosystem (Levings and Jamieson 2001).

3.1.5.14 Rockweed, Fucus distichus ssp. edentatus

Fucus distichus, commonly called rockweed, is found from the mid- to high-intertidal regions from Point Conception, California to Alaska. It is one of the most conspicuous species in temperate and subarctic systems and are the dominant intertidal algae on the west coast. For example, *Fucus distichus* comprises up to 90% of the biomass in the intertidal zone of Prince William Sound, Alaska (Stekoll and Deysher 1996). Due to this varied distribution and high biomass the species is often affected by shoreline and nearshore development.

The upper limit of rockweed is determined by desiccation stress. It can tolerate high levels of desiccation and actually photosynthesizes at a more efficient rate when under desiccation stress. The lower limit is determined by interspecific competition. Other seaweeds such as Lamanarians, will out-compete rockweed for space in the lower intertidal. Due to the limited quantity of Lamanarians in the CCAA, rockweed grows down to the low mid intertidal. The red seaweed (*Ahnefeltiopsis* spp.), found in the more exposed rock shelves, probably controls the lower limit in these habitats.

The canopy that rockweed creates in the intertidal community is a very important structuring component in the intertidal. It provides invertebrates with a food source and shelter from waves, desiccation, freezing and predators. Important grazers on rockweed include amphipods, isopods, littorines and other snails, chitons and limpets.

Rockweed has a development process more similar to that of animals than to most other algae. It produces eggs and sperm in small structures at the ends of the blades. Eggs are fertilized and settle to the substrate to form new plants, usually creating dense beds. Several life history stages have been defined for these benthic algae: spores or zygotes, germlings, juveniles and adults (Vadas et al. 1992). Important factors affecting settlement of algal spores include substrate type, sediment, silt, scouring effects, water motion, desiccation, temperature, nutrients, canopy effects, presence of turf, adult plants and presence of invertebrate grazers (Vadas et al. 1992). *F. distichus* in Prince William Sound lives for at least four years (Driskell et al. 2001).

Field measurements of growth in a related species on the Atlantic coast, spiral wrack (*Fucus spiralis*) showed season-dependant variation, with maximal growth in the summer attributed to an increase in water temperature, light intensity and day length. *F. distichus* on the Pacific coast showed higher growth rates in spring and summer with rates of 0.24 cm to 1.17 cm per month compared to growth in the winter of 0.5 to 0.4 cm per month (Ang 1991).

Disturbance experiments have attempted to address the recovery of rockweed and its contribution to successional patterns. Edelstein and McLachlan (1975) did not see recovery of *F. distichus* to its original status even after 4 years following removal and burning. Another clearing in an intertidal strip required over 10 years for recovery of algal species (Lodge 1948).

The rockweed population in western Canada is maintained primarily by periodic large recruitment pulses (Ang and De Wreede 1992).

3.1.5.15 Kelp

Kelps are not a taxonomically diverse group but provide some of the most productive habitat on the Pacific Coast. There are three groups of kelps that are defined by their canopy structure. The largest canopy kelps, such as *Macrocystis* spp. and *Nereocystis* spp., form the large kelp forests that grow to and float on the surface. The stipitate kelps forming the second group are small kelps held above the surface with small rigid stipes at intermediate depths. These include *Alaria, Laminaria* and *Pterogophora,* which form large subtidal forests on the west coast. The third group comprises the prostrate kelps that grow close to the benthos including *Hedophyllum* and other species of *Laminaria*.

Some of the dominant large kelps seen in the study area include *Laminaria* spp., *Alaria* spp., *Egregia* sp., *Nereocystis* sp., *Macrocystis* spp. and *Agarum* sp. (Druehl 2000). This is not an exhaustive list.

Marine kelps are important as modifiers of the abiotic environment. They have been shown to baffle currents and slow down horizontal water flow. This creates areas where water chemistry profiles become altered, in terms of factors such as increased sedimentation, water temperatures and dissolved oxygen concentrations. This creates a highly structured three-dimensional habitat for a number of species. There are epiphytic species that use the kelp surface as substratum on which to live. The kelp also provides shelter, spawning and nursery grounds and refuge from predators for a myriad of species. There are numerous taxa that are associated with kelps such as mammals, fish, molluscs, crabs and other algae (Steneck et al. 2002).

Kelp is sensitive to factors similar to those affecting eelgrass, with the exception of increased turbidity, increased eutrophication and increased epiphyte loads (Vandermeulen 2005). One of the dominant factors that appear to control kelp distribution and abundance is predation by grazers. The primary grazers on kelp are sea urchins. These grazers can clear a kelp bed, leaving only the coralline species remaining. Kelp will not recolonize an area when urchins are above a certain threshold. Once urchins are removed, the kelp will return. Snails and limpets are important grazers of kelp sporophytes and will control distribution (Vandermeulen 2005). In British Columbia, *Macrocystis* occurs in moderately wave-exposed areas with temperature between 6°C and 18°C and salinity greater than 23 ppt (Druehl 1978).

The large beds of *Nereocystis* and *Macrocystis* are found on the outer coasts (ILMB 2004, Internet site; see Figure 3-20). This is due to the presence of higher currents and upwelling nutrients. The CRIMS dataset shows the largest beds on the outside of Campania Island and the Estevan group.

3.1.5.16 Eelgrass, *Zostera* spp.

Eelgrass is a marine vascular plant that is found in sandy and muddy substrates on the Pacific coast. There are two dominant species of eelgrass in British Columbia. *Zostera marina* is the native species, while *Zostera japonica* was introduced from Japan, most likely through aquaculture material (Druehl 2000). Although this introduced species is often found growing with native species, it is not considered a threat to the distribution of the native species.

Eelgrass is energetically and ecologically important and provides vital habitat and refuge for a number of nearshore species at various life history stages, including epiphytic, epibenthic and infaunal animals. Regionally, eelgrass beds are considered very important as rearing habitats for juvenile salmon and many other commercially and culturally important species. Pacific herring use eelgrass as substrate on which to spawn. Juvenile Dungeness crabs use eelgrass beds for refuge from predation during both the juvenile phase as well as when the females are hardening their shells after mating (Sewell et al. 2001). Eelgrass is a primary source of detritus. As with most macrophytes, it baffles currents and reduces water velocity, which in turn promotes sedimentation.

The distribution of eelgrass in coastal ecosystems is controlled by a combination of biotic and abiotic factors, such as desiccation, temperature, salinity and water motion. The upper limit is often determined by exposure during low tide. The lower seaward limit is thought to be controlled by light availability. Eelgrass occurs in both intertidal and subtidal areas in the CCAA, typically between 2 and 5 m depth (chart datum [CD]).

Eelgrass can be found growing in both muddy and sandy substrates. Large eelgrass beds are often associated with estuarine conditions but are not exclusive to this habitat. Due to its preference for soft substrates, it is susceptible to scour and therefore is more successful in quiet waters. Optimal conditions are in currents of approximately 1.5 m/s. Eelgrass is also sensitive to wave action; eelgrass beds in shallow waters will alter shape and position when exposure to wave action is increased (Frederiksen et al. 2004). Optimum temperature for growth is between 10°C and 20°C (Adams and Whyte 1990) and optimum salinity is between 20 and 32 ppt (Phillips 1984). Light availability may be the most important factor affecting eelgrass distribution. Alterations in light attenuation and epiphyte loads have negative effects on eelgrass growth. Typical light regimes would be between 3 and 20 m secchi disk depths (Adams and Whyte 1990). Epiphyte loads, along with abundance and diversity of macrophytes in eelgrass beds, may be altered by the abundance and diversity of grazers present in the system (Duffy et al. 2001; Duffy et al. 2003).

Eelgrass reproduces both sexually and asexually. Asexual reproduction is through growth of the rhizome and formation of turions. On the northern coast of British Columbia, asexual reproduction occurs between late March and June. Studies in British Columbia have shown that in the appropriate environmental conditions a single eelgrass shoot may produce 10 branches per year (Durance 2002). Sexual reproduction is through seed formation and begins with flowering in May and June. Eelgrass is monoecious and fertilization occurs by drifting pollen. Release of pollen and stigmatic capture occur at separate times to promote outcrossing (Wyllie-Esheverria and Ackerman 2003). After fertilization, flowers develop into seed-bearing generative shoots that break off, float to the surface and release seeds. Very few of these seeds successfully mature into plants (Phillips 1984).

Eelgrass is sensitive to alterations within its environment. Eutrophication can have both direct and indirect negative effects on eelgrass populations. High nitrate levels will have adverse effects on eelgrass growth. It will also increase epiphyte loads that will have an effect on eelgrass growth via light limitation. High nutrient levels may also cause changes in the composition of the seaweed community, shifting to seaweeds that may shade eelgrass (Vandermeulen 2005). Other biological processes, such as herbivory and bioturbation, when altered may have negative effects on eelgrass growth.

3.1.5.17 Species at Risk

Green Sturgeon, Acipenser medirostris

The Green sturgeon is listed as a species of special concern because of a lack of knowledge and apparent absence of spawning habitat in Canada. The Green sturgeon is easily distinguished from the White sturgeon by a dark mark resembling an arrow that runs along the ventral side. Despite this unique characteristic, it is believed that Green sturgeon were often mistaken for White sturgeon until recently and as a result, historical records are largely unavailable and likely inaccurate where extant. Catch statistics for Green sturgeon have been collected since 1996 when DFO implemented 100% observer statistics.

Green sturgeon range from Mexico to Southeast Alaska but their greatest abundance appears to occur between the 40th and 60th parallels. There are only three spawning rivers identified, all of which are in the United States (Rogue, Klamath and Sacramento Rivers). Green sturgeons prefer estuaries and marine environments except when they return to rivers to spawn.

Sexually mature green sturgeon return to the rivers to spawn in the spring (March to July). Like most anadromous fish, they are oviparous broadcast spawners. Spawning occurs in the main stem of large rivers with fast water flow. Fecundity is positively correlated with size and age of females, but they generally release between 51,000 and 224,000 eggs. They have the largest eggs of any of the sturgeons, which most likely accounts for the lower fecundity. The high oxygen demands of the developing embryo may require cold, clean water for spawning. Larvae hatch after seven to 9 days and begin to feed after 10 days. Complete metamorphosis into juveniles occurs at approximately 45 days and these stay in the river for 1 to 4 years, gradually shifting further towards the ocean and adjusting to higher salinity. It is believed that the British Columbia population of green sturgeon comes from the three U.S. spawning aggregations. There is no evidence to suggest that its spawning habitat has ever existed in Canada. Adults travel long distances and spend 15 to 17 years in the ocean before they begin to return to the rivers to spawn, which they will then do every 3 to 5 years, spending the rest of the time in marine waters.

There is currently no recreational or commercial target fishery for Green sturgeon as they are generally considered unpalatable. Fishery statistics are gathered from bycatch records and incidental catches during White sturgeon tagging programs.

Leatherback Turtle, Dermochelys coriacea

The leather back turtle is one of seven marine turtles in the world and the only one that lives in Canadian Pacific waters. It is federally listed as endangered (*SARA*) and provincially red-listed (British Columbia *Wildlife Act*).

Leatherbacks have the most extensive geographic range of any reptile and have been recorded migrating 5,000 km in 128 days on the Atlantic coast. Leatherbacks inhabit the Pacific Ocean from 70°15'N to 27°S and migrate seasonally between feeding grounds in the North Pacific and nesting grounds in the tropical waters of the south.

Females from the Pacific population nest every 2 to 3 years on three known beaches in Central America and Mexico. They lay an average of six nests per year with 50 to 166 eggs in each nest and often place a number of unfertilized eggs on top of fertile eggs. After 60 to 65 days, hatchlings emerge from the nest. Nests are subject to high mortality due to predation, inclement weather, waves, tidal inundation and beach erosion. Hatchlings also suffer high mortality from predation. Hatchling and juvenile distribution is unknown, but it is fairly certain that they are restricted to warmer tropical waters until they reach a size large enough to tolerate colder temperatures.

Leatherbacks are commonly observed in British Columbia along the continental shelf in the open ocean between June and November, but will follow abundant planktonic food sources anywhere along the coast. Leatherbacks mainly prey upon jellyfish and other soft-bodied invertebrates. Due to the high water content and low energy value of their prey, they must consume large daily quantities to maintain a normal metabolic rate. Carapace lengths can reach up to 2 m, and individuals typically weigh up to 500 kg. Because of their large size and a layer of subcutaneous blubber, they are able to maintain core body temperatures up to 18° above ambient water temperature and can tolerate near-freezing conditions.

The overall abundance of Leatherback turtles in Canadian Pacific waters is uncertain. They are rarely seen in Douglas Channel. Key threats include incidental capture in fishing gear, high hatchling mortality and pollution that increases the ingestion of garbage in the ocean. Population estimates based on nesting females have indicated a 70% decline between 1980 to 1995 (COSEWIC 2001).

Northern Abalone, Haliotis kamtschatkana

Northern Abalone occur from Alaska to Baja California and are the only species of abalone found in British Columbia. They are listed as threatened under *SARA* (Government of Canada 2005, Internet site) and all fishing for abalone has been prohibited in British Columbia waters since 1990 (Jamieson 1999).

Northern abalone are single-shelled molluscs that grow to a diameter of 12 cm (Kozloff 1993) and have been estimated to live as long as 50 years (Jamieson 1999). They are patchily distributed on rock substrate in exposed or semi-exposed coasts throughout their range. As a primary prey species for the sea otter (also threatened under *SARA*), recovery of the northern abalone is highly associated with the recovery strategy for the sea otter (Fisheries and Oceans Canada and the Abalone Recovery Team 2004).

Abalone reproduce via broadcast spawning. As a result, adults often congregate during spawning events that can occur at any time of the year. Fertilization occurs when males and females simultaneously release gametes into the water column. Spawning by one individual usually triggers other individuals in the area to spawn, thus maximizing the potential for fertilization. Larvae reside in the water column for approximately 10 days, when they settle and begin to feed on bacterial epibiota. Estimates suggest that they mature at approximately 55 mm shell length, although this may be highly variable throughout their range. They are motile, but lifetime dispersal is estimated to be within a 10 to 100 m radius of their initial settling location. Adults feed on drifting algae that they capture with special extensions of their body called epipodia (Jamieson 1999).

The major cause of decline in northern abalone stocks in British Columbia is suspected to be consistent over-harvesting in the 1970s to 1990s. Although there is a complete moratorium on harvesting abalone in British Columbia, poaching continues to threaten remaining stocks of large, marketable abalone (Jamieson 1999). Because fecundity is correlated with size, the removal of large abalone decreases fertilization success and lowers juvenile recruitment into the breeding stock. Ample habitat is available throughout British Columbia and therefore is not thought to be a limiting factor in the recovery of this species.

Surveys of northern abalone around South Banks Island, Estevan Group Islands and two sites on Aristazabal Island indicate continued population decline (Campbell et al. 1998). These areas fall within the CCAA.

Yellow-Listed Species

Some fish species in the study area are provincially listed with a yellow designation. Species with status rank S5 are considered "common to very common" and are not susceptible to extirpation or extinction under present conditions (Vennesland et al. 2002). S5 yellow-listed species in the area may include longfin smelt, threespine stickleback, Pacific staghorn sculpin, pink salmon and chum salmon. Species with status rank S4 are considered "apparently secure" and may have a small range or low abundance in the province. Species in this category are actively monitored for indications of long-term threats or declines (Vennesland et al. 2002). S4 species that may occur in the area include Pacific lamprey, coho salmon, sockeye salmon and chinook salmon.

3.1.6 Shoreline Classification

The Coastal Resource Information Management System (CRIMS), a key initiative of the Integrated Land Management Bureau, is an interactive mapping system that contains information on British Columbia shoreline habitat classification. This information was used to determine shoreline classification and composition of the PEAA (see Table 3-2) and CCAA (see Table 3-3).

	0	
Shore Zone Type	Sum Length (m)	Percentage (%)
Estuary, marsh or lagoon	3,981.3	5.68
Gravel beach	491.4	0.70
Gravel flat	2,807.8	4.01
Mud flat	6,561.8	9.36
Rock cliff	6,755.0	9.64
Rock with gravel beach	15,253.9	21.77
Rock with sand beach	1,863.1	2.66
Rock, sand and gravel beach	3,189.8	4.55
Sand beach	3,697.5	5.28
Sand flat	23,551.7	33.61
Sand and gravel flat	1,919.0	2.74
Total length of shore zone	70,072.1	100.00

 Table 3-2
 Shoreline Classification and Sum Length for the PEAA

Table 3-3 Shoreline Classification and Sum length for the CCAA

Shore Zone type	Sum Length (m)	Percentage (%)
Unclassified	94,032.2	3.78
Channel	10,849.6	0.44
Estuary, marsh or lagoon	92,840.6	3.73
Gravel beach	63,623.6	2.56
Gravel flat	43,198.7	1.74
Man-made	3,081.9	0.12
Mud flat	7,794.0	0.31
Rock cliff	659,858.0	26.53
Rock platform	12,703.6	0.51
Rock with gravel beach	718,926.2	28.90
Rock with sand beach	17,382.0	0.70
Rock, sand and gravel beach	471,066.0	18.94
Sand beach	191,980.7	7.72
Sand flat	85,671.1	3.44
Sand and gravel beach	11,753.6	0.47
Sand and gravel flat	2,907.8	0.12
Total length of shore zone	2,487,669.7	100.00

3.2 Field Survey Results

3.2.1 Intertidal Habitat Characterization Results

3.2.1.1 Reconnaissance Survey Results

In 2005, 2006, 2008 and 2009, reconnaissance surveys were completed in the PEAA that focused on the western shoreline of Kitimat Arm. Qualitative transect surveys were completed at 13 sites (Figure 3-21), identifying general substrate and species composition. Over the four surveys, 42 intertidal species of flora and fauna were identified (see Appendix B, Table B-1). Five main foreshore habitat types that are typical in the PEAA were identified based on the species list and substrate observations:

- rock wall and ramp
- boulder beach
- sand and cobble beach
- estuarine (no transect surveys completed)
- marine riparian vegetation (no transect surveys completed)

iscal\1048334_NorthernGateway_TDR_2009

Rock Wall and Ramp

Rock wall and ramp is the dominant habitat type in the PEAA (approximately 32%). This habitat comprises rock walls, steep rock ramps and shallower rock platforms (25° to 35° slopes). Two sets of exposures (sheltered and exposed) with differing suites of organisms were recorded.

The high subtidal zone of sheltered areas is dominated by sea brush (*Ondonthalia floccossa*) with *Colpomenia* spp. epiphytes. Very few invertebrates were observed within this macrophyte cover; only limpets (*Tectura* spp.) were present. The low to mid intertidal (0 to 2 m above CD) zone is typical of the Pacific Northwest with bay mussels (*Mytilus trossulus*), Mastocarpus crust and limpets dominating the zone. The mid to high intertidal zone (1.5 to 4 m above CD) is dominated by rockweed (*Fucus distichus*), barnacles (*Balanus glandula*) and periwinkles (*Littorina* spp.) (see Photo 3-1).

Photo 3-1 Rock Wall and Ramp, Sheltered

Compared with sheltered areas, more exposed areas have a differing suite of macrophytes in the lower intertidal and high subtidal zones (see Photo 3-2). These areas are dominated by the red algae *Ahnfeltiopsis gigartenoides*, which forms a very dense, intertwined mat that appears to limit the presence of invertebrates. Deadman's fingers (*Halosaccion glandiforme*) commonly grow within this complex.

Photo 3-2 Exposed Rock Wall and Ramp

Boulder Beach

Rock platforms with boulder beach are predominantly covered with boulder and some cobble (see Photo 3-3). These areas have discontinuous patches of rockweed and mussels on the high points of the larger boulders. Mobile invertebrates such as green shore crab (*Hemigrapsus oregonensis*) are common in crevices and under rocks.

Photo 3-3 Boulder Beach

Sand and Cobble Beach

Sand and cobble beaches are often in pocket bays or more sheltered areas of the shoreline (see Photo 3-4). Sand beaches made up 4 of the 13 sites surveyed. The substrate is variable with sand, gravel and cobble dominating different areas of the beach. In these habitats limited small eelgrass beds were recorded. For example, in transect five there was an eelgrass bed that was approximately 20 m by 2 m in size. Rockweed and bay mussels are found on the larger cobble substrate. Green shore crabs are common beneath cobble. In addition, limpets, periwinkles, hermit crabs (*Pagurus* spp.) and kelp isopods (*Idotea wosesenski*) were recorded. In areas of freshwater seep, green string lettuces (*Ulva Intestinalis*) are present.

Photo 3-4 Sand and Cobble Beach

Estuarine

The PEAA also includes estuarine habitat, associated with rivers that discharge into Kitimat Arm. The closest estuary to the Kitimat Terminal site is Bish Cove Estuary (see Photo 3-5). The intertidal area of this estuary consists of extensive sand and shell debris, gravel and cobble. A qualitative assessment of Bish Cove revealed a typical suite of organisms including mussels, with associated periwinkles and limpets, and infaunal species such as clams and mud shrimp. The dominant marine macrophyte at this site is rockweed and the backshore is primarily a Lyngbye-associated wetland.

A small intertidal eelgrass bed is located at the southern end of Bish Cove. However most of the eelgrass in this cove is subtidal and was surveyed by SCUBA (see Section 1.7.2.1). Incidental records of observed species include Dungeness crab (*Cancer magister*), mud shrimp (*Crangon septemspinosa*), green shore crab, beach hoppers (*Traskorchestia traskiana*) and starry flounder (*Platichthys stellatus*).

Photo 3-5 Estuarine Habitat in Bish Cove

Marine Riparian Vegetation

Unaltered marine riparian habitat runs continuously along shorelines in the PEAA and PDA. It generally grows on a steep, rocky shoreline well above the high water mark, although it may receive saltwater spray during storms (Photo 3-6). The marine riparian zone in the PDA is densely populated with western hemlock, western red cedar, Amabilis fir, Sitka spruce and some Douglas-fir. Small shrubs occupy the shoreward limits of the zone, and mature forest stands extend inland from the shoreline, except for recently harvested areas (i.e., cutblocks) that support early successional vegetation.

Photo 3-6 Typical marine Riparian vegetation in the PDA

3.2.1.2 Intertidal Transect Survey Results

Intertidal transect surveys were completed in 2006, 2008, and 2009. These surveys were more systematic than the reconnaissance survey and involved quadrat sampling at 36 sites in 3 intertidal zones that span an approximately 2.5 km stretch of the shoreline surrounding the Kitimat Terminal (see Figure 3-22). Three of these sites were sampled in all three years. Transect surveys only covered the two dominant habitat types along the shoreline in the PDA: boulder and cobble, and rock wall and ramp.

Fiscal/1048334_NorthernGateway

TDR_2009

Intertidal habitat in the PDA shows typical patterns of intertidal zonation attributed to a high abundance of brown seaweeds (mostly *Fucus sp.*) in the high intertidal zone and brown seaweeds and barnacles in the mid intertidal zone. Mussel beds are found predominantly in rock wall habitat at the mid to low intertidal zone, but are not abundant in the more gently sloping boulder and cobble habitat. The low intertidal zone is generally characterized by a relatively low diversity of red and green seaweeds mixed with brown seaweeds (mostly simple kelps). Evidence of siltation from the Kitimat River plume is found throughout the shoreline of the PDA, most predominantly affecting the filamentous red and green seaweeds in the mid to low intertidal zone. Intertidal invertebrate diversity and abundance is generally low. Species present in the PDA include periwinkles, limpets, barnacles, mussels, isopods, and shore crabs.

3.2.2 Subtidal Habitat Characterization Results

3.2.2.1 Qualitative Subtidal Survey Results

Site 1: Estuarine

Site 1 is a typical north coast fjord estuarine habitat (Appendix D, Figures D-1 and D-2). The substrate is dominated by sand with pockets of pebble, pebble and cobble, cobble and sand, and mud. The subtidal survey revealed a fringing eelgrass bed that extends from the southern point to the mouth of the creek. On the east side of the estuary the fringing eelgrass bed extends from the subtidal into the lower intertidal area, this is the largest area of eelgrass in the surveyed area. Other macrophytes that dominate this site are small red seaweeds and the kelp complex *Agarum* sp. and *Laminaria* spp. There were a number of animals seen along the transects, including Dungeness crab, flatfish (English sole, yellowfin sole and starry flounder), sea cucumber (*Parastichopus californicus*) and seastars (*Pycnopodia helianthoides*).

Site 2: Sand and cobble beach

The substrate in this habitat is dominated by sand with pockets of mud, cobble and pebble, and cobble (Appendix D, Figure D-3). There is a very small fringing eelgrass bed in this bay recorded in the intertidal survey; it is only about 20 m long and 2 m wide. There are small amounts of red algae and stipate kelp (*Laminaria* spp.). The animals recorded at this location were dominated by Dungeness crab, sea cucumbers and sea pens (*Ptilosarchus* sp.).

Site 3: Rock Wall, Kitimat Terminal

The substrate at this site is predominantly bedrock with overlying surface sediments such as mud, pebbles, cobbles and boulders (Appendix D, Figures D-4 and D-5). The predominant macrophytes are small filamentous red algae. The animals that cover most of this community are small sessile invertebrates such as tunicates (e.g., *Halocynthia* spp., *Ascidia* spp.) and tubeworms (*Serpula* spp.). There were also a number of seastars and sea cucumbers. Analyses of particle-size distribution in sediment samples taken at the PDA in February 2006 suggest that the subtidal habitat is a combination of gravel, silt and clay, with sand and clay being dominant. Complete results of particle-size distribution are presented in Appendix C.

3.2.2.2 Quantitative Subtidal Survey Results

Subtidal video survey transect locations are presented in Figure 3-23. Coverage of the site was good; however, the following factors increased the difficulty of the survey and resulted in changes to the survey design:

- strong winds and spring tides producing strong tidal currents wind and tidal currents made course holding very difficult on several of the survey days, often resulting in a camera towing speed in excess of 2 knots. Under these conditions, the transect was aborted because of poor video quality.
- very turbid water reduced visibility due to turbid water required the use of an underwater video light on all transects and reduced video quality in several runs
- mixing between water layers mixing between an upper less-saline layer and a lower more-saline layer occurred frequently in shallow water, resulting in "lensing" and reduced video quality
- steep topography steep topography inhibited visual contact with the sea floor
- intermittent DGPS signal an intermittent DGPS signal increased positioning error

As a result of the steep topography, Transect 38 was divided into four separate diagonal runs. This avoided the difficulty of trying to tow the video camera along the edge of a cliff and also provided greater bio-zone coverage (e.g., traversing from shallow bio-zones to deep bio-zones, rather than staying at the same depth).

Transect 40 was moved inshore to shallower depths, as it was problematic to tow the camera at the limit of its tether (300 m).

The following sections summarize the confidence levels and results from the video surveys. For a detailed review, see Appendix D.

Confidence Levels

All transect crossover points were examined and, where sufficiently high-quality data existed for both transect lines, were used to determine confidence levels in data interpretation. A total of 35 crossover points (for the south survey) and 64 crossover points (for the north survey) were selected. Each crossover point consisted of a pair of data records which were compared for:

- bottom hardness (not included in the north survey)
- substrate
- primary flora
- primary fauna

The number of times that both data records had the same values for each category were recorded and used to generate percentage confidence (see Table 3-4 and 3-5 for the results).

Scal/1048334_NorthemGateway_Pr

Table 3-4Confidence Levels in Data Interpretation (June 2006 survey of
south marine PDA)

Category	Number of Points Compared	Number of Points in Agreement	Confidence (%)
Bottom hardness	19	17	89
Substrate	35	24	69
Primary flora	35	32	91
Primary fauna	35	25	71
Overall	124	98	79

Table 3-5Confidence Levels in Data Interpretation (June 2007 survey of
north marine PDA)

Category	Number of Points Compared	Number of Points in Agreement	Confidence (%)
Substrate	64	42	66
Primary flora	64	60	94
Primary fauna	64	38	60
Overall	192	140	73

The main factor believed to reduce confidence was the intermittent DGPS signal. During most of the survey the DGPS signal was received and position (in degrees decimal minutes) was accurate to four decimal places. However, during the day on which the shore-parallel transect lines were carried out, only a GPS signal was received (high mountains in the region prevented a DGPS signal from being received) and positions were accurate to two decimal places (positioning of satellites reduced GPS accuracy). Thus, the locations of the crossover points may have decreased accuracy.

Poor visibility made substrate interpretation more subjective, resulting in lower confidence levels in assignment of substrate type.

Lower confidence levels in assignment of primary fauna are expected, as fauna are mobile and may have moved out of the crossover area between transects.

Bathymetry and Bottom Hardness

The bathymetry survey area was located along the PDA shoreline and was divided into the following two sections (Appendix D, Figure D-6):

- the southern section (approximately one-third of the measured area's length) is shallower and slopes more gently towards depth
- the northern section (approximately two-thirds of the measured area's length) consists of a narrow shelf along the coast which abruptly drops off to deep water in a series of cliffs and ledges

The bottom hardness contour plot (Appendix D, Figure D-7) indicates that the site consists mainly of rock with some areas in deep water along the eastern edge of the surveyed region. Additionally, there are a few regions along the shore where the substrate is sand or gravel. The surveyed areas represent depositional environments, generally on seafloor with lower slope, where terrestrial sediments are accumulating.

Bottom Substrate

Based on video observations, the site substrate consists largely of silt veneer over bedrock

(Appendix D, Figure D-8). The depth of veneer varies from less than 1 cm in steeper areas to depths great enough to support a number of burrowing infauna. The depth of the veneer was very difficult to estimate from the video footage except in regions where it became very shallow and bedrock was exposed. In areas where the bottom hardness recordings from the mapping sounder indicated that the silt layer was the bottom was classified as silt-mud.

Exposed bedrock was observed in the northern section as steep cliffs alternating with ledges covered with silt. These shifts between cliffs and ledges form a large set of "steps" leading to deeper water.

Cobble and pebble substrates (Appendix D, Figure D-9) were found near the shoreline. This is consistent with the bottom hardness results.

Notable amounts of woody debris (Appendix D, Figure D-10), ranging from bark to large logs, were found at the site, indicating that some type of booming operation probably took place at or near the site. Several anthropogenic objects were also observed (e.g., cables, bottles, cans).

The shallow shelf area close to shore frequently had shell debris (Appendix D, Figure D-11), suggesting bivalve populations (many infauna holes were observed, but no siphons were identified).

Flora

Algae at the site are present on the narrow, shallow shelf close to shore. Foliose and filamentous greens dominate (Appendix D, Figure D-12). Some brown algae (*Laminaria* and *Fucus*; see Appendix D, Figure D-13) and small amounts of red algae (mostly foliose reds, with some coralline and encrusting reds; see Appendix D, Figure D-14) are also present. Red seaweeds were not observed during the survey of the northern part of the PDA. It is likely that some species of red seaweeds were present; however the heavy siltation made it impossible to observe the smaller seaweed species. Algal abundance declines rapidly with distance from the shoreline as a result of the rapid increase in depth and associated decrease in light.

Invertebrates

Overall, invertebrate diversity at the site is relatively low, but the abundance of certain species, particularly silt-dwelling infauna, is high (Appendix D, Figure D-15). A number of organisms are evenly distributed throughout the site at low abundances, including sea anemones (particularly the snakelock anemone; see Appendix D, Figure D-16), sea cucumbers (Appendix D, Figure D-17) and parchment tubeworms (Appendix D, Figure D-18).

The steep rock faces in the northern section provide good habitats for tubeworms, particularly calcareous tubeworms, brachiopods (Appendix D, Figure D-19) and green sea urchins (Appendix D, Figure D-20). These organisms occurred in dense patches wherever exposed and silt-free bedrock was present.

Two species of sponges, cloud sponges and an unidentified species, were present at the site, generally associated with steep, rugged bedrock substrate. Sponges were particularly abundant at the southern end of the survey areas, just outside the marine PDA (Appendix D, Figure D-21). Less than 25% of sponge aggregations in the southern region of the PDA showed evidence of active growth and much of the remaining sponges were completely or partially buried in silt. The high levels of siltation were probably responsible for the high mortality. However, it still represented a region of higher biological diversity compared with regions in the PDA, with increased populations of rockfish and seastars (Appendix D, Figure D-22). Cloud sponge was also present, although in much lower abundance, on the cliff faces in the northern section of the PDA.

Several commercially harvested invertebrate species were also observed. Crabs (Dungeness crab in shallower water and tanner crab in deeper water; see Appendix D, Figure D-23) are fairly abundant in the southern section. Shrimp and prawn are abundant in deeper water (Appendix D, Figure D-24). Crabs and prawns were more abundant in the northern region of the survey area where flat terrain with fine-grained sediments provides a more preferred habitat.

Fish

Fish were observed to be in relatively low to moderate abundance throughout the site. Those observed (gobies, sculpin, ratfish and flatfish) were generally evenly distributed throughout the site (Appendix D, Figure D-25). Exceptions include northern ronquil, which were found predominantly in deeper water (Appendix D, Figure D-26) and rockfish, which were observed in greatest abundance in the region of the sponge aggregations (Appendix D, Figure D-27). Eelpouts were abundant in the northern region of the PDA, associated with soft substrates.

Diversity Analysis Results

A diversity analysis of the survey site was carried out based on overlap between the distribution maps of various organisms observed at the site. Regions where the greatest number of species were observed (i.e., which had the greatest species richness) were mapped (Appendix D, Figure D-28). From this analysis, there were two regions in the site that had notably higher diversity than others:

- the southern portion of the survey area around the sponges occupying the knoll
- the steep rocky cliffs in the northern section

The cloud sponges provide habitat for fish species (e.g., rockfish) and a number of invertebrates (e.g., starfish). The cliff region provides silt-free rocky substrate for those organisms that require hard surfaces for attachment (e.g., calcareous tubeworms and brachiopods).

3.2.2.3 Sediment and Water Quality Survey Results

Ten sites were identified as sample locations within the 1.5 km area of the Kitimat Terminal. Two reference sites on the eastern side of Kitimat Arm, away from the PDA, were also surveyed (see Figure 3-24). For the analytical results of the sediment and water quality surveys, see Table 3-6, Appendix C.1 and Appendix C.2. BTEX, dioxins and furans were not analyzed in reference Samples 9 and 10, and only PCB, dioxin and furan analyses were conducted for Samples 8 and 11.

TDR_2009

Table 3-6Summary of Exceedances of Sediment Quality Guidelines

Sampling Locations	Sampling Locations Parameter		Notes
SWQ-06-	Chromium	CCME ISQG (52.3 mg/kg)	NA
(01, 02, 03, 04, 06, 07, 10,12			
All locations	Copper	CCME ISQG (18.7 mg/kg)	NA
All locations	Barium (a), cobalt (n), manganese (n), vanadium (n)	NOAA AETs (barium 48 mg/kg, cobalt 10 mg/kg,	Canadian guidelines not available
		manganese 260 mg/kg, vanadium 57 mg/kg)	
SWQ-06-	Total PAHs	CEPA screening limit for	NA
(02, 03)		ocean disposal (2.5 mg/kg)	
SWQ-06-	Phenanthrene	CCME ISQG (0.087 mg/kg)	NA
(01, 02, 03, 04, 05, 06, 07,12)			
SWQ-06-	Benzo(a)anthracene	CCME ISQG (0.075 mg/kg)	NA
(01, 02, 03, 04, 05, 06, 07,12)			
SWQ-06-	Pyrene	CCME ISQG (0.15 mg/kg)	NA
(01, 02, 03, 04, 03, 00, 07, 12)			NIA
(02.03)	TOTAL PARS	ocean disposal (2.5 mg/kg)	NA
SWQ-06-	Phenanthrene	CCME ISQG (0.087 mg/kg)	NA
(01, 02, 03, 04, 05, 06, 07, 12)			
SWQ-06-	Benzo(a)anthracene	CCME ISQG (0.075 mg/kg)	NA
(01, 02, 03, 04, 05, 06, 07, 12)			
SWQ-06-	Pyrene	CCME ISQG (0.15 mg/kg)	NA
(01, 02, 03, 04, 05, 06, 07, 12)			
SWQ-06-	Chromium	CCME ISQG (52.3 mg/kg)	NA
(01, 02, 03, 04, 05, 06, 07, 10, 12)			
All locations	Copper	CCME ISQG (18.7 mg/kg)	NA
All locations	Barium (a), cobalt (n), manganese (n), vanadium (n)	NOAA AETs (barium 48 mg/kg, cobalt 10 mg/kg, manganese 260 mg/kg, vanadium 57 mg/kg)	Canadian guidelines not available.

NOTES:

AETs (Apparent Effects Thresholds) based on toxicity to (a) amphipod; (n) Neanthes polychaete.

AET values relate chemical concentrations in sediments to biological indicators of injury and represent the concentration above which adverse biological impacts would always be expected by a specific biological indicator due to exposure to a specific contaminant (NOAA 1999, Internet site).

CCME - Canadian Council of the Ministers of the Environment

ISQG – interim sediment quality guideline

NA – Not Available

NOAA – National Oceanic and Atmospheric Administration

PAH – polycyclic aromatic hydrocarbons

For the analytical results for water chemistry, see Tables C-1 to C-4. See Table 3-7 for parameters that exceeded applicable regulatory guidelines or threshold values in water.

Sampling Locations	Parameter	Guidelines Exceeded	Notes
SWQ-06-	Chrysene	BC marine water quality	
(03, 04, 05, 09, 12)		(0.1 μg/L)	
SWQ-06-	Benzo(a)pyrene	BC marine water quality	
(01, 02, 03, 04, 12)		(0.01 µg/L)	
SWQ-06-	Dissolved cadmium	CCME marine water quality	Guideline is for
(01, 02, 07, 12)		(0.00012 mg/L)	total cadmium
SWQ-06-07	Dissolved zinc	BC marine maximum	Guideline is for
		(0.01 mg/L)	total zinc
NOTES:			
BC – British Columbia			
CCME – Canadian Counci	l of Ministers of the Envir	onment	

Table 3-7	Water Quality	Guideline	Exceedances	for Seawater
-----------	---------------	-----------	-------------	--------------

PAHs

For PAH concentrations in sediment, see Appendix C, Table C-8. Marine sediment guidelines were available for all PAH compounds.

Phenanthrene, benzo(a)anthracene and pyrene concentrations exceeded their respective CCME interim sediment quality guidelines (ISQGs) (0.087 mg/kg, 0.075 mg/kg and 0.15 mg/kg, respectively) in seven of ten samples, but did not exceed PEL. Total high molecular weight (HMW) PAH concentrations were not higher than the British Columbia No Adverse Effect level (9.6 mg/kg). Total PAH concentrations were greater than the CEPA screening limit for ocean disposal (2.5 mg/kg) in two sediment samples (SWQ 02 and SWQ 03).

Sediment concentrations of naphthalene, 2-methylnaphthalene, acenaphthylene, acenaphthene, fluorene, anthracene and benzo(k)fluoranthene were all below their respective method detection limits (MDL). However, the MDLs for these compounds were greater than their respective CCME ISQG concentrations; therefore, sediment concentrations could not be fully evaluated with respect to CCME guidelines.

Concentrations of phenanthrene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, benzo(g,h,i)perylene, total low molecular weight (LMW) PAHs, total HMW PAHs and total PAH concentrations were higher in sediment samples collected near the Kitimat Terminal than in reference samples (SWQ 09 and SWQ 10). For a comparison of the average PAH concentrations, see Table 3-8.

Table 3-8Sediment Polycyclic Aromatic Hydrocarbon Levels near the
Kitimat Terminal and Reference Areas

	Mean Concentrations (mg/kg)			
PAH	Kitimat Terminal Samples	Reference Samples		
Phenanthrene	0.14 ± 0.03	<0.05		
Total LMW-PAHs	0.14 ± 0.03	<0.05		
Fluoranthene	0.30 ± 0.06	0.04 ^a		
Pyrene	0.30 ± 0.06	0.04 ^a		
Benzo(a)athracene	0.20 ± 0.05	<0.05		
Chrysene	0.23 ± 0.05	<0.05		
Benzo(b)fluoranthene	0.53 ± 0.10	0.075		
Benxo(a)pyrene	0.27 ± 0.07	<0.05		
Indeno(1,2,3-cd)pyrene	0.20 ± 0.05	<0.05		
Benzo(g,h,I)perylene	0.20 ± 0.04	<0.05		
Total HMW-PAHs	2.22 ± 0.5	0.135		
Total PAHs	2.36 ± 0.5	0.135		
NOTES		•		

NOTES:

^a Used half MDL to calculate the mean for less than values (0.05 and 0.06).

HMW - high molecular weight

LMW - low molecular weight

PAH – polycyclic aromatic hydrocarbon

 \pm – mean standard deviation

For the PAH concentrations in seawater, see Appendix C, Table C-3. There are no marine water quality guidelines for quinoline or acridine.

Benzo(a)pyrene concentrations were greater than the British Columbia marine water quality guideline $(0.01 \ \mu g/L)$ in five samples (JW1, JW 2, JW 3, JW 4, JW 12). The method detection limits (MDLs) for benzo(a)pyrene assays were greater than the guideline concentration; therefore, samples with concentrations below the MDL could not be evaluated. Chrysene concentrations exceeded the British Columbia marine water quality guideline $(0.1 \ \mu g/L)$ in five samples (JW 3, JW 4, JW 5, JW 9, JW 12). Acenaphthene, anthracene, acridine and benzo(k)fluoranthene concentrations were below the respective MDLs in all samples.

There were some differences in PAH concentrations in seawater between samples collected near the Kitimat Terminal and samples collected at reference locations.

BTEX and Styrene

BTEX concentrations in seawater and sediment samples were below the respective method detection limits for all samples (see Appendix C, Tables C-2 and C-6).

Metals

See Table C-5 for the metal chemistry results for ten sediment samples. Sediment guidelines were not available for aluminum, boron, beryllium, bismuth, calcium, iron, potassium, lithium, magnesium, molybdenum, sodium, phosphorus, sulphur, silicon, strontium, titanium or thallium.

Chromium concentrations exceeded the CCME ISQG (52.3 mg/kg) in eight of ten samples, and copper exceeded the CCME ISQG (48.7 mg/kg) in all samples. Barium, cobalt, manganese and vanadium concentrations exceeded their respective NOAA apparent effects threshold (AET)² values in all sediment samples (48 mg/kg, 10 mg/kg, 260 mg/kg and 57 mg/kg, respectively).

Silver, beryllium, bismuth, antimony, selenium, tin and thallium were not detected in sediment samples. Cadmium was not detected in eight out of ten samples, and molybdenum was detected in only one sample.

There was little variation in metal concentrations between sediment samples collected near the Kitimat Terminal and samples collected at reference locations.

See Table C-1 for the dissolved metal concentrations in seawater collected in the benthic grabs. Marine water quality guidelines were not available for aluminum, beryllium, boron, calcium, cobalt, iron, lithium, magnesium, molybdenum, potassium, silicon, sodium, strontium, tin or titanium.

CCME and British Columbia guidelines represented total metal concentrations; whereas NOAA guidelines, with the exception of those for antimony and thallium, represented dissolved metal concentrations. Cadmium concentrations exceeded the CCME marine aquatic life guideline (0.00012 mg/L) in four seawater samples (SWQ01, SWQ02, SWQ07, SWQ12; see Table 3-4). The zinc concentration in sample SWQ07 exceeded the British Columbia maximum guideline concentration (0.01 mg/L). Aluminum, antimony, beryllium, bismuth, chromium, lead, lithium, mercury, silver, thallium, tin, titanium and vanadium concentrations were below their respective method detection limits in all seawater samples. Selenium was detected in only two samples, and iron was detected in only one sample.

There was little variation in metal concentrations in seawater between samples collected near the Kitimat Terminal and samples collected at reference locations.

Dioxins and Furans

See Appendix C, Table C-7 for the dioxin and furan sediment concentrations. Marine sediment guidelines were not available for individual dioxins or furans, with the exception of an NOAA AET value (3.6 pg/g) for 2, 3, 7, 8-TCDD.

TEQs ranged from 1.24 to 2.34 using toxic equivalent factors for fish described in CCME (2004) and up to 4.35 using various conventions for calculation (Van den Berg et al. 1998). These values were higher than the CCME ISQG of 0.85 pg/g but well below the probable effects level (PEL) of 21.5 pg/g (CCME 2004).

² AET values relate chemical concentrations in sediments to biological indicators of injury and represent the concentration above which adverse biological impacts would always be expected by a specific biological indicator due to exposure to a specific contaminant (NOAA 1999, Internet site).

Sediment samples from the two reference locations (SWQ09 and SWQ10) were not analyzed for dioxins and furans.

PCBs

See Appendix C, Table C-9 for the PCB concentrations in the sediment samples. Total PCB levels were below detection $(0.03 \ \mu g/g)$ in all samples except JW11, which had a value at the detection limit. Hence, they were below CCME and British Columbia sediment quality guidelines and CEPA screening limits for ocean disposal in all samples and were also below British Columbia sediment quality criteria and CEPA screening limits for ocean disposal. Samples from the two reference locations (SWQ09 and SWQ 10) were not analyzed for PCBs.

Other Parameters

See Appendix C, Table C-4 for the salinity, pH, ammonia and sulphide concentrations in seawater, and see Appendix C, Table C-10 for the total organic carbon and percent moisture data. Particle size distribution results are presented in Appendix C.3. Sediment is dominated by fine to medium silts and clay.

Invertebrate Toxicity Testing

For a summary of the invertebrate toxicity test results, see Table 3-9. For the amphipod survival test, sediment was judged to have failed the toxicity test if the mean 10-day survival rate was more than 20% lower than that in the reference sediment and was notably different. For the polychaete test, toxicity was determined by statistical comparison of test sediments with reference sediments.

Sediment samples were not found to be toxic to either of the invertebrate test organisms.

Sediment	Marine Amphipod		Polychaete				
Sample	Survival (%)	Notes	Survival (%)	Mean Growth Rate (mg/worm/day)	Notes		
SWQ-06-09	97 ± 4	Reference	100 ± 0	1.00 ± 0.07	NSD⁵		
SWQ-06-10	90 ± 8	Reference	100 ± 0	0.98 ± 0.15	NSD⁵		
SWQ-06-01	88 ± 8	Passed	100 ± 0	1.00 ± 0.07	NSD ^b		
SWQ-06-02	88 ± 8	Passed	100 ± 0	1.04 ± 0.09	NSD⁵		
SWQ-06-03	80 ± 12	Passed ^a	100 ± 0	0.99 ± 0.08	NSD⁵		
SWQ-06-04	87 ± 4	Passed	100 ± 0	0.95 ± 0.21	NSD ^b		
SWQ-06-05	85 ± 12	Passed ^a	100 ± 0	0.97 ± 0.13	NSD⁵		
SWQ-06-06	82 ± 6	Passed ^a	100 ± 0	0.99 ± 0.13	NSD⁵		

 Table 3-9
 Survival and Growth Results for Marine Invertebrates

Table 3-9 Survival and Growth Results for Marine Invertebrates (cont'd)

Sediment	Marine Amphipod		Polychaete			
Sample	Survival (%)	Survival Notes (%)		Mean Growth Rate (mg/worm/day)	Notes	
SWQ-06-07	84 ± 8	Passed ^a	100 ± 0	0.97 ± 0.10	NSD ^b	
SWQ-06-12	81 ± 11	Passed ^a	100 ± 0	1.02 ± 0.11	NSD ^b	
NOTES:						

Values are ± SD.

^a Amphipod survival measurably different from reference sediment SWQ09.

^b NSD = not measurably different from laboratory control.

3.2.2.4 Benthic Survey Results

Benthic samples were collected from six sampling stations (Figure 3-25). In total 14,884 individual organisms were counted. These organisms fell into a total of 1,662 taxa. For the most dominant taxa at each of the stations, see Table 3-10. For the most common species within those taxa, see Table 3-11.

3.2.3 Nearshore Fish Survey

Beach seine, pelagic gillnetting and longlining surveys in the PDA (Figure 3-26) confirmed the presence of 13 species of benthic and pelagic fish (see Table 3-12).

Twenty-five beach seines were conducted over a 5.5 km long shoreline segment. Seven of the beach seines contained no fish. In all, seven species were found in the beach seine surveys (see Table 3-13). Shiner perch was the most common species found, followed by threespine stickleback. Other species present include tidepool sculpin, high cockscomb, buffalo sculpin, great sculpin and manacled sculpin.

Nine gillnet surveys and three longline surveys were also completed in which seven species of fish were found, as well as Dungeness crab (see Tables 3-14 and 3-15). One of the gillnet surveys and one of the longline surveys did not capture any fish, either due to a low fish population or to gear failures. Five additional species caught by gillnet but not in the beach seines were dogfish, yellowfin sole, kelp greenling, sand sole and English sole.

9Fiscal/1048334_NorthernGate

TDR_2009

Table 3-10Most Dominant Taxa at Each Station

Station	Most Dominant	Second Most Dominant	Third Most Dominant	Total Abundance
B-06-01	Polychaeta (937)	Bivalvia (93)	Cumacea (26)	1,136
B-06-03	Polychaeta (1,357)	Amphipoda (88)	Bivalvia (83)	1,628
B-06-04	Polychaeta (2,509)	Bivalvia (330)	Amphipoda (41)	3,026
B-06-05	Polychaeta (1,454)	Bivalvia (103)	Amphipoda (29)	1,697
B-06-09	Polychaeta (2,827)	Bivalvia (967)	Gastropoda (62)	4,174
B-06-10	Polychaeta (2,317)	Bivalvia (641)	Amphipoda (55)	3,223

Table 3-11 Most Common Species at Each Station

Station	Common Species	Station	Common Species
B-06-01	Nephtys cornuta Aricidea ramosa Aricidea lopezi Galathowenia oculata	B-06-05	Aricidea lopezi Aricidea ramose Galathowenia oculata Microclymene nr. caudata Chaetozone spp.
B-06-03	Nephtys cornuta Scoletoma luti Aricidea ramose Aricidea lopezi Galathowenia oculata	B-06-09	Typosyllis heterochaeta Aricidea ramosa Decamastus nr. gracilis Galathowenia oculata Leitoscoloplos pugettensis Levinsenia gracilis Adontorhina cyclia Axinopsida serricata Macoma carlottensis Macoma spp. Ophiura sp. Scleroconcha trituberculata Macoma elimata
B-06-04	Aricidea lopezi Aricidea ramosa Galathowenia oculata Melinna nr. heterodonta Microclymene nr. caudata Sternaspis nr. fossor Adontorhina cyclia Axinopsida serricata	B-06-10	Ninoe gemmea Scoletoma luti Aricidea ramosa Galathowenia oculata Leitoscoloplos pugettensis Levinsenia gracilis Adontorhina cyclia Axinopsida serricata Macoma carlottensis Ophiura sp. Nephasoma diaphanes Acila castrensis

TDR_2009

Table 3-12Benthic and Pelagic Fish Recorded during Fish Surveys

	Survey Type			
Species	Beach Seine (BS)	Gillnet (GN)	Longline (LL)	
shiner perch	✓	✓		
(Cymatogaster aggregatus)				
English sole		✓		
(Parophrys vetulus)				
sand sole		\checkmark	\checkmark	
(Psettichthys melanostictus)				
yellowfin sole		\checkmark		
(Limanda aspera)				
tidepool sculpin	\checkmark			
(Oligocottus maculosus)				
cabezon		\checkmark	\checkmark	
(Scorpaenichthys marmoratus)				
great sculpin	\checkmark			
(Myoxocephalus				
polyacanthocephalus)				
manacled sculpin	\checkmark			
(Synchirus gilli)				
buffalo sculpin	\checkmark			
(Enophrys bison)				
kelp greenling		✓		
(Hexagrammos decagrammus)				
threespine stickleback (Gasterosteus aculeatus)	\checkmark			
high cockscomb	\checkmark			
(Anoplarchus purpurescens)				
dogfish		✓	✓	
(Squalus acanthias)				

Station	shiner perch	tidepool sculpin	threespine stickleback	great sculpin	buffalo sculpin	manacled sculpin	high cockscomb
BS-05-01 A		1					
BS-05-01 B	2					1	
BS-05-01 C							
BS-05-01 D		1					
BS-05-01 E	1	1					
BS-05-01 F							
BS-05-01 G		1					
BS-05-01 H							
BS-05-02 A	2		2				
BS-05-02 B							
BS-05-02 C							
BS-05-03 A							
BS-05-04 A	80						
BS-05-04 B	152		1				
BS-05-05 A	16						
BS-06-06 A	7			3			
BS-06-06 B	12		100	3			1
BS-06-06 C	65		1	1	1		4
BS-06-06 D	11			1			
BS-05-07 A	10						
BS-05-07 B	1						
BS-05-07 C							
BS-05-07 D	13						
BS-05-08 A			25				
BS-05-08 B	300						

Table 3-13Beach Seine Catches in Douglas Channel, July 2005

Table 3-14Gillnet Catches in Douglas Channel, September 2005

Station	Tide (m)	shiner perch	English sole	Cabezon	kelp greenling	sand sole	yellowfin sole	Dungeness crab
GN-05-01	1.92							
GN-05-02	2.50		14					1
GN-05-03	5.24	1	3	5				1
GN-05-04	0.48		1					
GN-05-05	0.49		1	5	1	2		7
GN-05-06	0.92		1			2	2	5
GN-05-07	1.23		1					
GN-05-08	4.94							
GN-05-09	5.17							

Table 3-15 Longline Catches in Douglas Channel, September 2005

Station	Effort	Tide (m)	Giant Sculpin	Dogfish	Sand Sole
LL-05-01	19 hooks/3 hours	5.20	1		
LL-05-02	24 hooks/22 hours	2.65	1	4	2
LL-05-03	24 hooks/5 hours	3.53			

3.2.4 Nearshore Crab Survey

Nine crap traps were deployed over a one week period in the PDA (Figure 3-27). There were concerns about the effectiveness of the traps; as a result, confidence in the results of this survey is moderate. There were no crabs caught in any of the traps during the survey.

3.3 Modelling Results

3.3.1 Sediment Plume and Dispersion Modelling Results

The model was used to compute TSS concentrations and the total deposition of sediment released during dredging operations. The model simulations of TSS concentrations from the dredging operations indicates that TSS values are low at the surface, being generally less than 0.25 mg/L, except in the immediate vicinity of the dredging barge where there is a maximum TSS value of 2.7 mg/L. Naturally occurring TSS concentrations fall in this same range of values or are higher during major river freshet events. At depths of 10 to 20 m, the area with TSS values exceeding 2.5 mg/L are confined to areas within 200 m of the dredging location, with peak values at the dredging barge of up to 58 mg/L. A very diffuse sediment plume having TSS values of 0.25 to 2.5 mg/L occurs as a band approximately 300-m wide extending up to 3 km along the coastline. This diffuse band of sediments would be difficult to detect, as the naturally occurring TSS concentrations are comparable in magnitude. The TSS values are generally reduced at greater depths. However after seven days of dredging operations, TSS concentrations of 0.25 to 2.5 mg/L are computed for depths of 50 to 70 m as the finer silt and clay particles slowly descend to the bottom. The area of this diffuse plume extends over distances of 2 km along the coast and up to 1 km from the coast.

The maximum thickness of deposited sediments is 1.1 cm but generally much less than this. The area of sediment deposition exceeding 0.1 cm is largely confined to the immediate zone of dredging activities. Outside this disturbed area, there is less than 0.1 cm of sediment deposition and typically only 0.0025 to 0.05 cm. For results, see Appendix A.

4 References

4.1 Literature Cited

- Adams, M.A. and I.W. Whyte. 1990. *Fish habitat enhancement: a manual for freshwater, estuarine and marine habitats*. Department of Fisheries and Oceans. Vancouver, BC. 330 pp.
- Alaska Department of Fish and Game. 1985. Dungeness Crab, Cancer magister. In Alaska Habitat Management Guide, South-central Region, Volume 1: Life Histories and Habitat Requirements of Fish and Wildlife. Alaska Department of Fish and Game, Division of Habitat. Juneau, AK. 379-385.
- Alaska Department of Fish and Game. 1998. Essential Fish Habitat Assessment Report for the Salmon Fisheries in the EEZ off the Coast of Alaska. North Pacific Fishery Management Council. Anchorage, AK.
- Ang, P.O. 1991. Natural dynamics of a *Fucus distichus (Phaeophyceae: Fucales)* population: reproduction and recruitment. *Marine Ecology Progress Series* 78: 71–85.
- Ang, P.O.J. and R.E. De Wreede. 1992. Density-dependence in a population of *Fucus distichus*. *Marine Ecology Progress Series* 90(2): 169–181.
- Beacham, T.D., D.E. Hay and K.D. Le. 2005. Population structure and stock identification of eulachon (*Thaleichthys pacificus*), an anadromous smelt, in the Pacific Northwest. *Marine Biotechnology* 7(4): 363–372.
- Behrens Yamada, S., S.A. Navarrete and C. Needham. 1998. Predation induced changes in behavior and growth rate in three populations of the intertidal snail, *Littorina sitkana* (Philippi). *Journal of Experimental Marine Biology and Ecology* 220: 213–226.
- Bell, L.M. and R.J. Kallman. 1976. *The Kitimat River Estuary: Status of Environmental Knowledge to* 1976. Department of the Environmental Regional Board of Pacific Region. Kitimat, BC.
- Brennan, J.S. and H. Culverwell. 2004. *Marine Riparian: An assessment of riparian functions in Marine Ecosystems*. Unpublished manuscript, Seattle, WA.
- Cameron, J. and P. Fankboner. 1989. Reproductive biology of the commercial sea cucumber *Parastichopus californicus* (Stimpson) (*Echinodermata: Holothuroidea*). 2. Observations on the ecology of development, recruitment, and the juvenile life stage. *Journal of Experimental Marine Biology and Ecology* 127(1): 43–67.
- Campagna, S. and C. Hand. 2004. Baseline estimates from sea cucumber (Parastichopus californicus) surveys conducted in British Columbia, Canada. Canadian Science Advisory Secreteriat. Research Document 2004/065. Fisheries and Oceans Canada. Nanaimo, BC.
- Campbell, A., I. Winther, B. Adkins, D. Brouwer and D. Miller. 1998. Survey of the northern abalone (Haliotis kamtschatkana) in the central coast of British Columbia, May 1997. Canadian Stock Assessment Secretariat Research Document. 98/99: 28.

- Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2001. COSEWIC Assessment and Update Status Report on the Leatherback Turtle Dermochelys coriacea in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, ON.
- Committee on the Status of Endangered Wildlife in Canada (COSEWIC). 2002. Assessment and Status Report on the Bocaccio Sebastes paucispinis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, ON.
- Connell, J.H. 1972. Community interactions on marine rocky intertidal shores. *Annual Review of Ecology* and Systematics 3: 169–192.
- Dayton, P.K. 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. *Ecological Monographs* 41(4): 351–389.
- DFO. 1983. Proceedings of a Workshop on the Kitimat Marine Environment. Institute of Ocean Sciences. Sidney, BC.
- DFO. 2001. Fish stocks of the Pacific Coast. Fisheries and Oceans Canada. Ottawa, ON. 1–162 pp.
- DFO. 2002. Underwater World Pacific Salmon. Communications Directorate. Pacific Biological Station. Nanaimo, BC.
- DFO. 2005. Pacific Region Integrated Fisheries Management Plan for Eulachon from April 1, 2005 to March 31, 2006. Fisheries and Oceans Canada. Ottawa, ON.
- DFO. 2009. *Groundfish. February 21, 2009 to February 20, 2010.* Pacific Region Integrated Fisheries Management Plan. Ottawa, ON.
- Driskell, W.B., J.L. Ruesink, D.C. Lees, J.P. Houghton and S.C. Lindstrom. 2001. Long-term signal of disturbance: *Fucus gardneri* after the Exxon Valdez oil spill. *Ecological Applications* 3: 815–827.
- Druehl, L. 2000. Pacific Seaweeds. Harbour Publishing. Madeira Park, BC.
- Druehl, L.D. 1978. The distribution of *Macrocystis integrifolia* in British Columbia as related to environmental parameters. *Canadian Journal of Botany* 56: 69–79.
- Duffy, J.E., K.S. Macdonald, J.M. Rhode and J.D. Parker. 2001. Grazer diversity, functional redundancy, and productivity in seagrass beds: An experimental test. *Ecology* 82(9): 2417-2434.
- Duffy, J.E., J.P. Richardson and E.A. Canuel. 2003. Grazer diversity effects on ecosystem functioning in seagrass beds. *Ecology Letters* 6(7): 637–645.
- Durance, C. 2002. *Methods for mapping and monitoring eelgrass habitat in British Columbia*. Canadian Wildlife Service, Environment Canada. Vancouver, BC.
- Edelstein, T. and J. McLachlan. 1975. Autecology of *Fucus distichus* ssp. *distichus* (*Phaeophyceae: Fucales*) in Nova Scotia, Canada. *Marine Biology* 30(4): 305–324.
- Eyster, L. and J. Pechenik. 1987. Attachment of *Mytilus edulis* L. larvae on algal and byssal filaments is enhanced by water agitation. *Journal of Experimental Marine Biology and Ecology*114(2–3): 99–110.

- Fisheries and Oceans Canada and the Abalone Recovery Team. 2004. *National Recovery Strategy for the Northern Abalone (Haliotis kamtschatkana) in Canada*. Ottawa, ON.
- Frederiksen, M., D. Krause-Jensen, M. Holmer and J.S. Laursen. 2004. Spatial and temporal variation in eelgrass (*Zostera marina*) landscapes: influence of physical setting. *Aquatic Botany* 78: 147–165.
- Gebruk, R.D., A. Levin and V. Manship. 2000. Feedings and digestive strategies in deposit-feeding holothurians. *Oceanography and Marine Biology* 38: 257–310.
- Gillespie, G.E. and N.F. Bourne. 2000. *Exploratory intertidal clam surveys in British Columbia 1989*. Canadian Manuscript Report on Fisheries and Aquatic Sciences 2508:100.
- Gosling, E.M. 1992. Systematics and Geographic Distribution of Mytilus. In E. M. Gosling (ed.), *The Mussel* Mytilus: *Ecology, Physiology, Genetics and Culture*. No. 25 ed., Amsterdam: Elsevier Science Publications.
- Government of British Columbia. 2002. British Columbia Marine Ecological Classification : Marine Ecosections and Ecounits. Version 2. Resources Information Standards Committee. Ministry of Sustainable Resource Management. Victoria, BC.

Government of Canada. 2003. Species at Risk Act: A Guide. Species at Risk Public Registry. Ottawa, ON.

- Harbo, R. 1999. *Whelks to Whales: Coastal Marine Life of the Pacific Northwest*. Harbour Publishing. Madeira Park, BC.
- Hart, J.L. 1973. Pacific Fishes of Canada. Fisheries Research Board of Canada. Ottawa, ON.
- Hay, D. and P.B. McCarter. 2000. Status of the eulachon Thaleichthys pacificus in Canada. Canadian Stock Assessment Secretariat. Research Document 2000/145. Fisheries and Oceans Canada. Nanaimo, BC.
- Hay, D.E., P.B. McCarter, R. Kronlund and C. Roy. 1989. Spawning areas of British Columbia herring: a review, geographical analysis and classification. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2019. Volumes 1–6.
- Jamieson, G.S. 1999. Review of status of northern, or pinto, abalone, Halitois kamtschatkana, in Canada. Canadian stock assessment Secretariat. Research Document 99/190. Fisheries and Oceans Canada. Nanaimo, BC. 22 p.
- JASCO Research Ltd. 2006. *Marine Acoustics Technical Data Report*. Prepared for Northern Gateway Pipelines Inc. Calgary, AB.
- Kozloff, E.N. 1993. Seashore Life of the Northern Pacific Coast: An Illustrated Guide to Northern California, Oregon, Washington, and British Columbia. University of Washington Press. Seattle, WA.
- Lane, D.E., W. Wulff, A. McDiarmid, D.E. Hay and B. Rusch. 2002. A review of the biology and fishery of the Embiotocids of British Columbia. Canadian Science Advisory Secretariat. Research Document 2002/123 No. 2002/123. Fisheries and Oceans Canada. Nanaimo, BC.

- Levings, C. and G. Jamieson. 2001. Marine and Estuarine Riparian Habitats and Their Role in Coastal Ecosystems, Pacific Region. Canadian Science Advisory Secretariat. Research Document 2001/109. Fisheries and Oceans Canada. Nanaimo, BC.
- LGL Limited Environmental Research Associates. 2004. A Review of the State of Knowledge of Marine and Shoreline Areas in the Queen Charlotte Basin. Prepared for University of Northern British Columbia Northern Land Use Institute. Prince George, BC.
- Lodge, S.M. 1948. Algal growth in the absence of Patella on an experimental strip of foreshore, Port St. Mary, Isle of Man. *Proceedings of the Transactions of the Liverpool biological Society* 56: 78–85.
- Love, M.S., M. Yoklavich and L. Thorsteinson. 2002. *The Rockfishes of the Northeast Pacific*. University of California Press. Berkley, CA.
- MacDonald, R.W. 1983. *Proceedings of a Workshop on the Kitimat Marine Environment 18*. Canadian Technical Report of Hydrography and Ocean Sciences. Kitimat, BC.
- McCarter, P.B. and D.E. Hay. 1999. Distribution of spawning eulachon stocks in the central coast of British Columbia as indicated by larval surveys. Canadian Stock Assessment Secretariat. Research Document 99/177. Fisheries and Oceans Canada. Nanaimo, BC.
- National Research Council. 2002. *Riparian Areas: Functions and Strategies for Management*. Report of the National Research Council. National Academy Press. Washington, DC.
- Paine, R.T. 1974. Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. *Oecologia* 15: 93–120.
- Phillips, R.C. 1984. *The ecology of eelgrass meadows in the Pacific Northwest: a community profile.* United States Fish and Wildlife Service. Washington, DC.
- Seed. 1969. The ecology of *Mytilus edulis* L (*Lamellibranchiata*) on exposed rocky shores. 1. Breeding and settlement. *Oecologia* 3: 277–316.
- Sewell, A.T., J.G. Norris, S. Wyllie-Echeverria and J. Skalski. 2001. *Eelgrass monitoring in Puget Sound: Overview of the Submerged Vegetation Monitoring Project*. Prepared for the Washington State Department of Natural Resources. Olympia, WA.
- Shared Strategy Development Committee. 2009. *Puget Sound Salmon Recovery Plan*. Adopted by the National Marine Fisheries Service (NMFS). Seattle, WA.
- Stanley, R.D., P. Starr and N. Olsen. 2004. *Bocaccio Update*. Fisheries and Oceans Canada. Science Branch. Nanaimo, BC.
- Stekoll, M.S. and L. Deysher. 1996. Recolonization and restoration of upper intertidal *Fucus gardneri* (*Fucales, Phaeophyta*) following the Exxon Valdez oil spill. *Hydrobiologia* 326-327(1): 311–316.
- Steneck, R.S., M.H. Graham, B.J. Bourque, D. Corbett, J.M. Erlandson, J.A. Estes and M.J. Tegner. 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. *Environmental Conservation* 29(4): 436–459.

- Stoffels, D. 2001. *Background Report- Eulachon in the North Coast*. Government of British Columbia. Victoria, BC.
- Triton Consultants Ltd. 1993. *MTBE Trans-shipment Project Environmental Baseline and Sensitivity Final Report*. Prepared for Alberta Envirofuels Inc. Kitimat, BC.
- Triton Consultants Ltd. 2010. *Marine Fisheries Technical Data Report*. Prepared for: Northern Gateway Pipelines Inc. Calgary, AB.
- Vadas, R.L., S. Johnson and T.A. Norton. 1992. Recruitment and mortality of early post-settlement stages of benthic algae. *British Phycological Journal* 27(3): 331–351.
- Vandermeulen, H. 2005. Assessing marine habitat sensitivity: A case study with eelgrass (Zostera marina L.) and kelps (Laminaria, Macrocystis). Canadian Science Advisory Secretariat. (Research Document 2005/032. Fisheries and Oceans Canada. Dartmouth, NS.
- Vennesland, R., A. Harcombe, S. Cannings and L. Darling. 2002. *Species Ranking in British Columbia: About more than just numbers.* Government of British Columbia. Victoria, BC.
- Williams, G.L. 1993. Coastal/Estuarine Fish Habitat Description and Assessment Manual, Part II, Habitat Description Procedures. Fisheries and Oceans Canada, Pacific Region. Nanaimo, BC.
- Willson, M.F. and K.C. Halupka. 1995. Anadromous fish as keystone species in vertebrate communities. *Conservation Biology* 9(3): 489–497.
- Woodby, D., S. Smiley and R. Larson. 2000. Depth and habitat distribution of *Parastichopus californicus* near Sitka, Alaska. *Alaska Fishery Research Bulletin* 7: 22–32.
- Wyllie-Esheverria, S. and J.D. Ackerman. 2003. The Seagrasses of the Pacific Coast of North America. In E. P. Green & F. T. Short (eds.), *World Atlas of Seagrasses*. University of California Press. Berkeley, CA.
- Zacharias, M.A. and J.C. Roff. 2001. Explanations of patterns of intertidal diversity at regional scales. *Journal of Biogeography* 28: 471–483.

4.2 Personal Communications

Reagan, M. 2006. Resource Manager, Regional Fisheries. Fisheries and Oceans Canada, Resource Management. Prince Rupert, BC. Telephone conversation. February 13, 2006.

4.3 Internet Sites

- Alaska Department of Fish and Game. 1994. *Pink Salmon*, Oncorhynchus gorbuscha. Accessed: May 2009. Available at: http://www.adfg.state.ak.us/pubs/notebook/fish/pink.php
- Alaska Fisheries Science Center. 2008. *Resource Assessment and Conservation Engineering, Fish Photos by species*. Accessed: May 2009. Available at: http://www.afsc.noaa.gov/RACE/media/photo_gallery/photos/Osmeridae/eulachon.jpg

- Alaska Sealife Centre. 2009. *Project Centre, Animal Fact Sheet*. Accessed: May 2009. Available at: http://www.alaskasealife.org/master/animal_fact/halibut.html
- British Columbia Conservation Data Centre (BC CDC). 2005. *BC Species and Ecosystems Explorer*. Accessed: May 2009. Available at: http://a100.gov.bc.ca/pub/eswp/
- British Columbia Conservation Data Centre (BC CDC). 2008a. *Species Summary:* Thaleichthys pacificus. Accessed: September 25, 2008. Available at: http://a100.gov.bc.ca/pub/eswp/
- British Columbia Conservation Data Centre (BC CDC). 2008b. *Species Summary:* Gasterosteus aculeatus. Accessed: May 2009. Available at: http://a100.gov.bc.ca/pub/eswp/
- British Columbia Conservation Foundation. 2006. *Greater Georgia Basin Steelhead Recovery Plan*. Accessed: May 2009. Available at: http://www.bccf.com/steelhead/
- British Columbia Ministry of Agriculture and Lands (BC MAL). 2006. *Coastal Resource Information Management System*. Accessed: March 2007. Available at: http://ilmbwww.gov.bc.ca/cis/coastal/others/crimsindex.htm
- British Columbia Ministry of Fisheries and Habitat Conservation Trust Fund. 1999. *B.C. Fish facts: Coastal Cutthroat Trout* Oncorhynchus clarki clarki. Accessed: May 2009. Available at: http://wlapwww.gov.bc.ca/wld/documents/fishfacts/cutthroattrout.pdf
- DFO. 2006. *Kitimat Hatchery Fish Production*. Accessed: September 2008. Available at: http://www-heb.pac.dfo-mpo.gc.ca/facilities/kitimat/production_e.htm
- DFO. 2007. 2007 Salmon Stock Outlook. Accessed: September 2008. Available at: http://www-ops2.pac.dfo-mpo.gc.ca/xnet/content/Salmon/webdocs/SalmonStockOutlook2007.htm
- DFO. 2008a. Interim guide to information requirements for environmental assessment of marine finfish aquaculture projects 2008. Available at: http://www.dfo-mpo.gc.ca/aquaculture/ref/AAPceaafin-eng.htm
- DFO. 2008b. *Do You Know: Chum Salmon?* Accessed: May 2009. Available at: http://www.pac.dfompo.gc.ca/fm-gp/species-especes/salmon-saumon/facts-infos/chum-keta-eng.htm
- DFO. 2008c. *Do You Know: Pink Salmon?* Accessed: May 2009. Available at: http://www.pac.dfompo.gc.ca/fm-gp/species-especes/salmon-saumon/facts-infos/pink-rose-eng.htm
- DFO. 2008d. *Do You Know: Coho Salmon?* Accessed: May 2009. Available at: http://www.pac.dfo-mpo.gc.ca/fm-gp/species-especes/salmon-saumon/facts-infos/coho-eng.htm
- DFO. 2008e. *Do You Know: Chinook Salmon?* Accessed: February 2009. Available at: http://www.pac.dfo-mpo.gc.ca/species/salmon/salmon_facts/chinook_e.htm
- DFO. 2008f. *Do You Know: Sockeye Salmon?* Accessed: May 2009. Available at: http://www.pac.dfompo.gc.ca/fm-gp/species-especes/salmon-saumon/facts-infos/sockeye-rouge-eng.htm
- DFO. 2008g. *Salmon Fisheries in the Pacific Region*. Accessed: May 2009. Available at: http://www.pac.dfo-mpo.gc.ca/fm-gp/species-especes/salmon-saumon/fisheries-peches/index-eng.htm#Commercial_

- DFO. 2008h. *Do You Know: Steelhead?* Accessed: May 2009. Available at: http://www.pac.dfo-mpo.gc.ca/fm-gp/species-especes/salmon-saumon/facts-infos/steel-arc-eng.htm
- DFO. 2009. *Sidney Pier Artificial Reef Science Centre*. Accessed: May 2009. Available at: http://www.pac.dfo-mpo.gc.ca/sci/protocol/spars/Animals/animals.htm
- Government of Canada. 2005. *Species at Risk Act: Schedule 1*. Accessed: December 2005. Available at: http://www.sararegistry.gc.ca/species/default_e.cfm
- Integrated Land Management Bureau (ILMB). 2004. *Kelp Beds Coastal Resource Information Management System (CRIMS)*. Accessed: May 2009. Available at: https://apps.gov.bc.ca/pub/geometadata/metadataDetail.do?from=search&edit=true&showall=sho wall&recordSet=ISO19115&recordUID=3871
- Integrated Land Management Bureau (ILMB). 2007. British Columbia, Coastal Resource Information System. Accessed: November 2008. Available at: http://maps3.gov.bc.ca/imf406/imf.jsp?site=dss_coastal
- National Oceanic and Atmospheric Administration (NOAA). 1999. Sediment Quality Guidelines (ERL/ERM). Accessed: May 2009. Available at: http://response.restoration.noaa.gov/type_subtopic_entry.php?RECORD_KEY(entry_subtopic_ty pe)=entry_id,subtopic_id,type_id&entry_id(entry_subtopic_type)=89&subtopic_id(entry_subtopic c_type)=5&type_id(entry_subtopic_type)=2
- National Oceanic and Atmospheric Administration (NOAA). 2009. *Marine and Anadromous Fish*. Accessed: May, 2009. Available at: http://www.nmfs.noaa.gov/pr/species/fish/
- National Oceanic and Atmospheric Administration (NOAA) and US Department of Commerce. 2001. South Slough National Estuarine Research Reserve. Accessed: May 2009. Available at: http://mpa.gov/helpful_resources/south_slough.html
- University of Washington. 2009. *Those that run from the sea*. Accessed: May 2009. Available at: http://www.atmos.washington.edu/~mantua/anad2.htm
- USGS. 2009. *Nonindigenous aquatic species*. Accessed: August 2009. Available at: http://nas.er.usgs.gov/queries/FactSheet.asp?speciesID=702
- Washington State Department of Fish and Wildlife. 2001. *Fish and Wildlife Science*. Accessed: February 2006. Available at:

http://images.google.ca/imgres?imgurl=http://www.duke.edu/web/nicholas/bio217/lsm11/herring. jpg&imgrefurl=http://www.duke.edu/web/nicholas/bio217/lsm11/fish.htm&usg=__waxvJ72ZSUl mCXSbaRwJBAghxkY=&h=200&w=299&sz=12&hl=en&start=17&um=1&tbnid=QKRepDWR EMk6WM:&tbnh=78&tbnw=116&prev=/images%3Fq%3Dpacific%2Bherring%26ndsp%3D21 %26hl%3Den%26rlz%3D1T4GGLR_enCA282CA282%26sa%3DN%26um%3D1

Wilderness Committee. 1998. Everyone's help needed to save Wild Coho Salmon Miracle. Accessed: May 2009. Available at: http://www.wildernesscommittee.org/campaigns/wildpacific/salmon_farms/reports/Vol17No04/k eypoint

Appendix A ASL Sediment Dispersion Model

3-D Numerical Modeling of Sediment Dispersion and Transport For Marine Dredging and Terrestrial Disposal Activities of the Enbridge Gateway Project

Prepared for:

Jacques Whitford Ltd.

Burnaby, B.C.

Attn: Ben Wheeler

Prepared by

David Fissel, Jianhua Jiang and Keath Borg **ASL Environmental Sciences Inc.** 1986 Mills Road, Sidney, BC, V8L 5Y3 Phone: (250) 656-0177; Fax: (250) 656-2162 e-mail: dfissel@aslenv.com

ASL File: PR-554 task 8

June 2006

ASL Environmental Sciences for Jacques Whitford Ltd.

Correct Citation for this Report:

Fissel, D., J. Jiang and K. Borg, 2006. 3-D Numerical Modeling of Sediment Dispersion and Transport for Marine Dredging and Terrestrial Disposal Activities of the Enbridge Gateway Project. Unpublished Report for Jacques Whitford Limited, Burnaby B.C. by ASL Environmental Sciences Inc., Sidney, B.C., vi + 34 p.

Numerical Flow and Sediment Modeling – Set-up, Calibration and Validation – Kitimat Arm ii

EXECUTIVE SUMMARY

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

FIGURES

Figure 1: Mass of sediment as a function of depth in about 174 m of water			
Figure 2: The bathymetry, reduced to the lowest normal tide (chart datum, used by the			
model5			
Figure 3: Kitimat River discharge, Nanakwa wind speed, wind direction, and tidal height			
forcing in September			
Figure 4: Kitimat River discharge, Nanakwa wind speed, wind direction, and tidal height			
forcing in September			
Figure 5: Initial temperature, salinity, and density profiles are shown in blue, and the			
southern boundary temperature, salinity, and density profiles are given in purple.			
The profiles on the left are for the calibration model run in September, 2005, and the			
profiles on the right are for the verification model run in January, 2006			
Figure 6: Surface velocities at 19:00 and 21:00 on September 21, 200510			
Figure 7: Surface velocities at 1:00 and 4:00 on September 22, 2005			
Figure 8: Surface velocities at 7:00 on September 22, 2005			
Figure 9: Velocities at 9 m depth at 19:00 and 21:00 on September 21, 2005 11			
Figure 10: Velocities at 9 m depth at 1:00 and 4:00 on September 22, 2005 12			
Figure 11: Velocities at 9 m depth at 7:00 on September 22, 2005			
Figure 12: Velocities at 41 m depth at 19:00 and 21:00 on September 21, 2005			
Figure 13: Velocities at 41 m depth at 1:00 and 4:00 on September 22, 2005 14			
Figure 14: Velocities at 41 m depth at 7:00 on September 22, 2005			
Figure 15: Along-channel flow speeds and directions for 9, 15, and 81 m depth. The red			
dots denote measurements, and the blue lines denote model results			
Figure 16: Mean speed (blue), and max speed (red) profiles for the model (lines) and			
measurements (open circles)16			
Figure 17: Vector average north velocity component (red) and east velocity component			
(blue) for the model (lines) and measurements (open circles)			
Figure 18: Surface velocities at 08:00 and 11:00 on January 24, 2006			
Figure 19: Surface velocities at 14:00 and 17:00 on January 24, 2006			
Figure 20: Surface velocities at 20:00 on January 24, 2006			
Figure 21: Velocities at 6 m depth at 08:00 and 11:00 on January 24, 2006			
Figure 22: Velocities at 6 m depth at 14:00 and 17:00 on January 24, 200620			
Figure 23: Velocities at 6 m depth at 20:00 on January 24, 2006			
Figure 24: Velocities at 29 m depth at 08:00 and 11:00 on January 24, 200621			
Figure 25: Velocities at 29 m depth at 14:00 and 17:00 on January 24, 2006			
Figure 26: Velocities at 29 m depth at 20:00 on January 24, 2006			
Figure 27: Along-channel flow speeds and directions for 5, 17, and 29 m depth. The red			
dots denote measurements, and the blue lines denote model results			
Figure 28: Mean speed (blue), and max speed (red) profiles for the model (lines) and			
measurements (open circles) in the verification model case			
Figure 29: Vector average north velocity component (red) and east velocity component			
(blue) for the model (lines) and measurements (open circles) in the verification			
model case25			
Figure 29: Schematic Diagram of COCIRM-SED system			

ASL Environmental Sciences for Jacques Whitford Ltd.

TABLES

Table 1: The vertical layer depths (at bottom of layer) and thickness of each layer.4

1.0 INTRODUCTION

An integrated ocean circulation and sediment transport model was adapted and implemented for Kitimat Arm to provide information on the fate and dispersal of sediments discharged from the Enbridge Gateway project. The Gateway project involves two potential types of sediment releases from project activities: (a) sediments released during dredging operations for construction of the marine terminal site along the coastline of northwestern Kitimat Arm and (b) disposal of terrestrial sediments along with dredged sediments at an ocean disposal site. The mass and timing of the released sediments released, are consistent with the Project Description for the Marine Terminal (Enbridge Gateway Environment Assessment Volume 6).

1.1 COCIRM-SED Circulation and Sediment Transport Model

The model used was ASL's COCIRM-SED model, a fully three dimensional integrated model based on a circulation model (COCIRM), a coastal wave model (SWAN) a sediment transport module and geomorphological module. For this modeling application, the coastal wave model was not applied as waves are generally small in this area and the steep terrain of the region results in only very small areas where the water depths are sufficiently small that waves would be important in resuspension of sediments. Also, the geomorphological module was not applied for this application, since the very large water depths of typically 100 to > 350 m combined with the small currents limit the potential for changes in the seabed. However, the direct deposition resulting from settling of suspended sediments is explicitly modeled through the sediment module.

1.2 STFATE Near Field Model

STFATE is a numerical modeling package prepared by the U.S. Army Corps of Engineers for simulating the short term fate of material from open water barge disposals (US EPA and USACE, 1991). The model proceeds through three stages: The convective descent of the material through the water column, the dynamic collapse once the bottom has been reached, and finally the long term diffusion. STFATE assumes a steady time-independent flow, so results from STFATE were limited to concentration profiles taken soon after the disposal.

STFATE was run with a 100 m grid resolution, allowing it to match the horizontal resolution used by COCIRM-SED. Each of the 5 dumping sites were simulated individually with their own representative water depth, and assuming a flat bottom. The maximum allowable 5 points were used to represent the density structure of the water column. Because STFATE was being used primarily to model the dumping phase rather than the long term diffusion, zero-current speeds were imposed. This assumption prevented the shear actually known to be in the water column from advecting the near-surface material from the deeper material. Given the STFATE runs were only the first 20 minutes after dumping, and the total simulation extended over at least 7 days, this simplification had a negligible impact on the final outcome.

The barge was assumed to carry 4800 cubic yards of material, with 26.4% of the material being silt, 21.6% being clay, and the remaining 52% being rock. The net density of the material was about 130 lb/ft³ (2.09 $\times 10^3$ kg/m³). STFATE allowed for the floculation of the silt and clay by recalculating a settling velocity which was proportional to the concentration raised to the 4/3 power for concentrations between 25 mg/L and 3 g/L. The model also allowed the clay and silt to be stripped from the sediment cloud during descent.

The disposal operation was assumed to take place from a stationary barge. At the start of the operation, the draft of the barge was 22 feet, and over 2 minutes the contents were emptied. The process of emptying was simulated by 4 discreet discharges of material of 1000, 1400, 1400, and 1000 cubic yards respectively. Upon completion of the discharge, the barge draft was 5 feet.

Modeling of the disposal was done for up to 20 minutes, because over most of the water column, it took this long for the material to spread out to fill the 100 m grid. For these depths, a single concentration could be entered into COCIRM-SED. For the near-bottom, though, spreading had occurred, and a 5x5 grid of concentrations were entered. STFATE has no explicit vertical resolution, but allows sediment concentrations to be extracted for user selected depths. Concentrations were extracted for depths coincident with the centre of COCIRM-SED bins. Part of the reason for extracting concentrations at a higher vertical resolution at the near-bottom was the rapid increase in concentrations (Figure 1). For each disposal site, the concentration at the peak was extracted. This concentration was scaled back by a factor of 0.679 to account for the peak being distributed over a much smaller vertical span that the peak itself, and an additional factor of 1.022 was included to account for the spreading of material beyond the 5x5 grid for this single depth. As a final check, COCIRM-SED inputs were used to calculate the total suspended sediment. Consistency was found with STFATE, except for the deepest site where the peak silt concentrations needed to be scaled up by an additional 25-30% to conserve mass. It should be noted that only the silt, and not the clay, needed this additional empirical scaling factor.

Figure 1: Mass of sediment as a function of depth in about 174 m of water.

2.0 MODEL DOMAIN AND BATHYMETRY

2.1 Model Domain and Grid Resolution

A realistic numerical model domain was created for the full area of Kitimat Arm as well as Kildala Inlet. The model domain has a total length of 29.8 km and a width of 11.8 km. In the horizontal, the model has grids of size 100 m by 100 m over the full domain, and within 2 km of the marine terminal area, a high resolution nested grid of 20 m by 20 m is used. In the vertical, the model represents the water column as

Vertical Grid: The 20 vertical z-coordinate layers before chart datum (Table 2) are unevenly distributed in order to allow more realistic representation of depths in the marine dredging area and the upper layer where velocities have larger vertical gradients. There is also one layer above chart datum which is used to represent the variability of water levels due to the tides and other forcing conditions.

.

Cal/Ver	Thickness	Disposal	Thickness
(m)	(m)	Case (m)	(m)
2	2	2	2
4	2	4	2
7	3	7	3
10	3	10	3
13	3	13	3
16	3	16	3
20	4	20	4
25	5	25	5
30	5	30	5
40	10	40	10
50	10	50	10
70	20	70	20
100	30	100	30
140	40	140	40
180	40	144.7	4.7
220	40	149.7	5
260	40	158.7	9
310	50	163.7	5
360	50	168.7	5
		172	3.3

Table 1: The vertical layer depths (at bottom of layer) and thickness of each layer for the dredging and calibration/verification models, and for the disposal models.

2.2 Bathymetry

Water depths are represented in the model on the scale of the horizontal grid dimensions. The water depths were obtained from digital versions of the Canadian Hydrographic Service Nautical chart numbers 3736 and 3743.

Figure 2: The bathymetry, reduced to the lowest normal tide (chart datum, used by the model.

2.3 Model Time Step and Stability

The model is operated on computation time step corresponding to 15 s in real-world time. For this purposes of modeling simulations of the fate of the transport and deposition of sediments, the 3-D numerical model was operated for a period of 7 full days in most cases, with one model simulation extending over 14 days. The total computer time to run the model on a very fast PC Windows computer is approximately 3 days.

2.4 Initial and Boundary Conditions

Numerical Flow and Sediment Modeling – Set-up, Calibration and Validation – Kitimat Arm 5

The model is forced by water level elevations at the open southern boundary as well as by River discharges at the north boundary (Kitimat River) as well as representing river inputs through Bish Creek, Jesse Lake and Kildala Inlet. The water levels at the southern boundary were based on tidal elevations measured offshore of the terminal area in a water depth of 179 m in the September 2005, and in a water depth of 30 m in January and April 2006 (Appendices A.7 and A.8 in GEM, 2006). The tidal heights are referenced to the lowest normal mean water level or chart datum. The Bish Creek, Jesse Lake, and Kildala river inputs were taken to be linearly proportional to the Kitimat River discharge (which is gauged) based on the relative basin areas. Wind forcing was spatially uniform across the model domain, and was taken from the Nanakwa shoal buoy, located just south of Coste Island.

Figure 3: Kitimat River discharge, Nanakwa wind speed, wind direction, and tidal height forcing in September for the calibration run.

The freshwater discharge forcing in September was relatively low, peaking at just over 100 m^3 /s. The wind speeds were generally at $4 \pm 2 \text{ m/s}$, though a wind speed of up to 9 m/s was measured in the calibration period. The winds were almost always from the south. The tidal heights showed a strong semi-diurnal variation, and had a magnitude of about 5 m.

Figure 4: Kitimat River discharge, Nanakwa wind speed, wind direction, and tidal height forcing in January for the verification run.

The freshwater forcing in January was much stronger than in September, peaking at over 250 m^3 /s. In the second half of the model run, after January 22, all of the discharge values exceeded 100 m^3 /s. The wind speeds were much more variable, often with speeds under 2 m/s, but also reaching peaks of 8-11 m/s every day to four days. The winds were along channel, usually from the south, but with several events from the north. One of the longer northerly events started around mid-day on the 19^{th} , and persisted for almost a day. The wind speeds nearly reached 8 m/s during this event.

The temperature, salinity, and density profiles for the calibration model, in September, are shown in the left panel of Figure 5. The model domain was initialized with a spatially uniform field, illustrated by the magenta curve, and the salinity and temperature properties (blue curve) were advected across the open boundary. The riverine input was reflected in the somewhat fresher and less dense surface waters encountered in the initial conditions than the boundary conditions. These trends were also maintained in the initial and boundary conditions for the verification model in January; however, the boundary salinity and density at depth were significantly larger than the initial model conditions.

Figure 5: Initial temperature, salinity, and density profiles are shown in blue, and the southern boundary temperature, salinity, and density profiles are given in purple. The profiles on the left are for the calibration model run in September, 2005, and the profiles on the right are for the verification model run in January, 2006.

3.0 MODEL CALIBRATION

Model calibration was carried out for Sept 15 to Sept. 22, 2005 using data collected in this period, and analyzed in GEM technical report ASL-TR-007.

3.1 Initial Conditions and Stabilization

The initial conditions for model calibration and verification runs were as follows:

- (1) All velocities were set equal to zero.
- (2) Water elevation at each grid point was set to a constant value, which was equal to the initial water elevation at the downstream open boundary. The boundary conditions used in the model runs are described in Section 2.4.

Starting from initial conditions, the modeled flows gradually converge to a stable state. Here, we deemed that the model results were stable when maximum velocity fluctuations were less than 0.005 m/s. This process takes about 3 days of real time and consumes computer time of about 12 hrs of computer time.

3.2 Calibration Model Results

3.2.1 Flows

The flow fields within the model are illustrated starting 6.5 days into the model run, and every 3 hours thereafter for a near-surface, mid-depth, and near-bottom level. At the near-surface, there is a general down-channel flow at all of the times sampled. It is at the head of the inlet where the flow direction show large magnitude flow reversals. Between 19:00 and 22:00, the flood tide diminishes in magnitude (Figure 6). At 01:00 on 22 September, the tide has turned to ebb, and by 04:00 the ebb flow is large (Figure 7). By 07:00, the currents flood tide has returned (Figure 8). At 9 m, and 14 m, the strong flows associated with the river are no longer evident in the vector flow plots (Figure 9 through Figure 14). Examination of the time series plots of current speed and direction indicate that at 9 and 15 m depth, there is a flow reversal from northward to southward flow near midnight. These time series are taken from a point offshore of the terminal site, and indicate that even though the strongest flows are to the south, there are reversals and weak flood currents.

In Figure 15, the blue curve indicates the modeled currents, and the red dots indicate the measured currents. Both the model and measurements reflect a predominant southerly flow, with episode of northerly currents. Examination of the speed panel indicates that there are several events where the surface currents reach speeds of 20 cm/s or more. These higher speed events almost always correspond to southerly flow, both in the model and in the measurements, even though there is not always consistency in when these events occur.

Figure 6: Surface velocities at 19:00 and 22:00 on September 21, 2005.

Figure 7: Surface velocities at 1:00 and 4:00 on September 22, 2005..

Figure 8: Surface velocities at 7:00 on September 22, 2005.

Figure 9: Velocities at 9 m depth at 19:00 and 21:00 on September 21, 2005.

Figure 10: Velocities at 9 m depth at 1:00 and 4:00 on September 22, 2005.

Figure 12: Velocities at 41 m depth at 19:00 and 21:00 on September 21, 2005.

Figure 14: Velocities at 41 m depth at 7:00 on September 22, 2005.

Figure 15: Along-channel flow speeds and directions for 9, 15, and 81 m depth. The red dots denote measurements, and the blue lines denote model results.

Numerical Flow and Sediment Modeling – Set-up, Calibration and Validation – Kitimat Arm

3.2.2 Summary Statistics

The mean and maximum current speeds are calculated for the calibration model run, both for the model (solid lines), and measurements (open circles) in Figure 16. Overall, there is good agreement with the mean speeds agreeing to within 3 cm/s, and the maximum speeds usually agreeing to within 5-10 cm/s. There may be a tendency for the model to underestimate the maximum, but there is no clear bias in the mean current speed.

Figure 16: Mean speed (blue), and max speed (red) profiles for the model (lines) and measurements (open circles).

The vector mean current components are illustrated in Figure 17. The east component (blue) tends to be small, and the agreement tends to be limited. The sign of the north component (red) agrees at the near-surface and near-bottom, and the magnitude agrees to within 1-2 cm/s.

Figure 17: Vector average north velocity component (red) and east velocity component (blue) for the model (lines) and measurements (open circles).

4.0 MODEL VERIFICATION

Model calibration was carried out for January 17 to January. 27, 2006 using data collected in this period, and analyzed in GEM technical report ASL-TR-008.

4.1 Verification Model Results

4.1.1 Flows

As was the case for the calibration case, the dominant flow direction is to the south. Between the 08:00 and 11:00 measurement on January 24, a flow reversal from a flood to ebb is evident in the area of the terminal site at all depths (Figure 18, Figure 21, and Figure 24). It isn't until 20:00 (Figure 20), that the same characteristically large ebb flows which were found in the calibration model run are found again in the verification model run.

Figure 18: Surface velocities at 08:00 and 11:00 on January 24, 2006.

Figure 19: Surface velocities at 14:00 and 17:00 on January 24, 2006.

Figure 20: Surface velocities at 20:00 on January 24, 2006.

Figure 21: Velocities at 6 m depth at 08:00 and 11:00 on January 24, 2006.

Figure 22: Velocities at 6 m depth at 14:00 and 17:00 on January 24, 2006.

Numerical Flow and Sediment Modeling – Set-up, Calibration and Validation – Kitimat Arm 20

Figure 24: Velocities at 29 m depth at 08:00 and 11:00 on January 24, 2006.

Figure 25: Velocities at 29 m depth at 14:00 and 17:00 on January 24, 2006.

Figure 26: Velocities at 29 m depth at 20:00 on January 24, 2006.

Examination of the time series plots in Figure 27 indicates the same pattern of episodes of high speed events directed to the south. Once more the model predicts their existence, and is able to predict the timing of some of them, such as the event of January 23, but there are also examples such as the 3 large peaks starting on January 22 which the model is unable to predict.

Figure 27: Along-channel flow speeds and directions for 5, 17, and 29 m depth. The red dots denote measurements, and the blue lines denote model results.

Numerical Flow and Sediment Modeling – Set-up, Calibration and Validation – Kitimat Arm

4.1.2 Summary Statistics

The mean and maximum current speeds are calculated for the validation model run, both for the model (solid lines), and measurements (open circles) in Figure 28. Overall, there is good agreement with the mean speeds agreeing to within 3 cm/s, and the maximum speeds agreeing to within 5-10 cm/s. There may be a tendency for the model to overestimate the mean, but underestimate the maximum.

Figure 28: Mean speed (blue), and max speed (red) profiles for the model (lines) and measurements (open circles) in the verification model case.

The vector mean current components are illustrated in Figure 29. The east component (blue), tends to be small, in both the measurements and the model; however the sign of the model component is sometimes wrong. The north component (red) reflects the trend from large negative (southward) flows at the surface to small southward flows at the near-bottom. Except for the 5 m depth, the north component magnitude tends to agree to within 1-2 cm/s.

Figure 29: Vector average north velocity component (red) and east velocity component (blue) for the model (lines) and measurements (open circles) in the verification model case.

5.0 SUMMARY

6.0 LITERATURE CITED

Casulli, V. and Cheng, R.T. (1992). "Semi-implicit finite-difference method for threedimensional shallow water flow." International Journal of Numerical Method in Fluids, 15, 629-648.

EPA and USACE, 1995. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. - Testing Manual (Final, Workgroup Draft) (Inland Testing Manual). Environmental Protection Agency and United States Army Corps of Engineers, Washington D.C., 86 p.

Jiang, J. and D. B. Fissel, 2006. 3D Hydrodynamic Modeling of Sediment Dynamics on Roberts Bank Fraser River Foreslope, Strait of Georgia, Canada In: Estuarine and Coastal Modeling: proceedings of the Ninth International Conference, ed. M.L. Spaulding. American Society of Civil Engineers (in press).

Jiang, J. and D. B. Fissel, 2004. 3D Numerical modeling study of cooling water recirculation. In: Estuarine and Coastal Modeling: proceedings of the eighth international conference, ed. M.L. Spaulding. American Society of Civil Engineers, 512-527.

Jiang, J., D.B. Fissel and D. Topham, 2003. 3D Numerical modeling of circulation associated with a submerged buoyant jet in a shallow coastal environment. Estuarine, Coastal and Marine Science, 58: 475-486.

Jiang, J. and D.B. Fissel, 2005. Numerical modeling of flows in Canoe Pass: Phase 1 Report. Report for Focus Environmental on behalf of Canoe Pass Tidal Energy Corp and New Energy Corporation Inc. by ASL Environmental Sciences Inc., Sidney BC, Canada, 28p.

J. Jiang, D.B. Fissel, 2004. 3-D Numerical modeling of flows at the confluence of the Columbia and Pend d'Oreille Rivers: model re-calibration and re-verification. Technical report for Waneta Expansion Power Corporation by ASL Environmental Sciences Inc., Sidney, B.C. Canada, 38p.

Fissel, D.B. and J. Jiang, 2002. 3-D Numerical modeling of flows at the confluence of the Columbia and Pend d'Oreille Rivers: examination and evaluation of performance. Report for Columbia Power Corporation by ASL Environmental Sciences Inc., Sidney BC, Canada, xi + 78 p. + Appendices.

Jiang J. and D.B. Fissel, 2002. Numerical modeling of flows at the confluence of the Columbia and Pend d'Oreille Rivers: Phase report for the proposed Waneta Expansion Project. Report for Columbia Power Corporation by ASL Environmental Sciences Inc., Sidney BC, Canada, xviii + 249 p. + unnumbered Appendices (on CD).

Mellor, G.L. and T. Yamada, 1982. Development of a turbulence closure model for geographical fluid problems. Review of Geophysics, 20(4), 851-875.

US EPA and USACE, 1991. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. – Testing Manual, draft, Washington, D.C.

APPENDIX A: DETAILED DESCRIPTION OF THE COCIRM-SED MODEL

(from Jiang and Fissel, 2006)

COCIRM-SED consists of four integrated modules (Figure 1): circulation, wave, sediment transport and morphodynamics. The circulation module (COCIRM), developed over the past several years (Jiang, 1999; Fissel, et al., 2002; Jiang, et al., 2003; Jiang and Fissel, 2004), represents a computational fluid dynamics approach to the study of river, estuarine and coastal circulation regimes. The wave module is an adaptation of the third generation, nearshore transformation spectral wave model, SWAN, developed by the Delft University of Technology. The sediment transport model involves the dynamics of cohesive and non-cohesive sediment based on multiple size classes. The morphological module solves the bottom elevation variations due to sediment deposition and erosion over different periods. The model explicitly simulates such natural forces as pressure heads, buoyancy or density difference due to salinity, temperature and suspended sediment, river inflow, meteorological forcing, and bottom and shoreline drag. The model applies the fully three-dimensional basic equations of shallow water hydrodynamics and conservative mass transport combined with a second order turbulence closure model (Mellor and Yamada, 1982), where the pressure is simply assumed hydrostatic, then solves for time-dependent, three-dimensional velocities, salinity, temperature, suspended sediment concentrations and coarse sediment bed-loads by size category, turbulence kinetic energy and mixing length, horizontal and vertical diffusivities, water surface elevation, 2D wave spectra, wave forces, and bottom elevation variations.

A semi-implicit finite difference method is applied in COCIRM-SED. This numerical solution has the advantage of good stability. The stable time step, dt, is only restricted by horizontal diffusivity as follows (Casulli and Cheng, 1992)

$$dt \le \text{MIN}\left[2(A_x, A_y)\left(\frac{1}{dx^2} + \frac{1}{dy^2}\right)\right]^{-1}$$
(1)

Figure 30: Schematic Diagram of COCIRM-SED system.

where A_x and A_y are respectively horizontal diffusion coefficients in x- and y-directions, and dx and dy are spatial grid sizes in x- and y-directions, respectively. Evidently, when $A_x = A_y = 0$, this scheme becomes unconditionally stable. The model is incorporated with a drying/wetting scheme and is capable of modeling circulation, wave and sediment dynamics over intertidal zones. By using a fully dynamic and two-way connection nested grid approach (Jiang, et al., 2003), the model also allows a high grid resolution refinement, up to a factor of 1/20, in particular area of interest to coastal engineering project and having high resolution demand. The horizontal grid sizes are typically in the range of 5 m to 1,000 m. The vertical sigma-grid may be distributed evenly or with logresolution near surface and bottom and linear in between, with typically 10 – 20 layers.

To activate the sediment transport and morphological modules, one need only input the grain size (d_k) and percentage fraction (f_k) for each sediment category, with a typical total number of categories 5 – 20. COCIRM-SED readily simulates settling velocities (w_k) , suspended sediment concentration (c_k) , bed-load rates $(S_{b,k})$, and bottom elevation changes by size category. For fine-grained sediments with particle size less than 32 – 62 µm (clay – silt range), modeling of cohesive sediment transport will be involved, while for coarse sediments with particle size greater than 32 – 62 µm (sand, granule and fine pebble), modeling of non-cohesive sediment transport will be activated.

For cohesive sediments, bottom deposition, D_k (Krone, 1962), erosion, E_k (Parchure and Mehta, 1985), and settling velocity, w_k (Mehta and Li, 1997) are given by

$$D_{k} = w_{s,k} c_{k} H \left[1 - \frac{\tau_{cw}}{\tau_{d}} \right] \left(1 - \frac{\tau_{cw}}{\tau_{d}} \right)$$
(2)

$$E_{k} = f_{k} M_{\max} \exp(-\chi \tau_{e}^{\lambda}) H\tau_{cw} - \tau_{e}$$
(3)

$$w_{s,k} = \left[\frac{ac_k^{\alpha}}{(c_k^2 + b^2)^{\beta}}\right] \left[\frac{\rho_{s,k} / \rho(\theta, s, c) - 1}{1.65}\right] \left[\frac{10^{-6}}{\upsilon(\theta, c)}\right] F(\theta)$$
(4)

where H[-] is a heavyside function which becomes zero if the quantity inside the square brackets becomes negative, otherwise is equal to one, τ_{cw} is the bottom shear stress due to current and wave (Grant and Madsen, 1979), τ_d is the critical shear stress for deposition, which is taken as 0.1 N/m² (Krone, 1962), τ_e is the critical shear stress for erosion, M_{max} is the maximum erosion constant at $\tau_{cw} = 2\tau_e$, χ , λ , a, b, α and β are the sedimentdependent empirical coefficients, θ is the temperature, $\rho_{s,k}$ is the sediment dependent fluid density of kth sediment, $\rho(\theta,s,c)$ is the temperature, salinity and sediment dependent fluid density, $\upsilon(\theta,c)$ is the temperature and sediment dependent fluid viscosity, and $F(\theta)$ is the temperature effect function on flocculation, $F(\theta)=1.777-0.0518\theta$, for $\theta=0-30$ °C (Jiang, 1999). Two types of cohesive sediment beds are classified, namely newly-deposited and fully-consolidated beds. The newly-deposited bed goes through consolidation process (Toorman and Berlamont, 1993), while the dry weight for the fully-consolidated bed is simply computed using empirical profile formula. The shear strength of the bottom cohesive sediments is then calculated in terms of solid weight fraction as follows (Mehta, 1991).

$$\tau_{e} = \tau_{e0} + \alpha_{1} (\phi - \phi_{c})^{\beta_{1}}$$
(5)

where τ_{e0} is the shear strength for newly deposited sediment, α_1 and β_1 are sedimentdependent coefficients, ϕ is the solid weight fraction (= $c_k / \rho_{s,k}$), ϕ_c is the critical solid weight fraction below which mud has a fluid-like consistency.

For non-cohesive sediments, the effect of particle interaction on settling velocities is considered as follows

$$w_k = \left(1 - \frac{c}{\rho_{s,k}}\right)^4 w_{k0} \tag{6}$$

where *c* is the total suspended sediment concentration, and w_{k0} is the free settling velocity. By assuming spherical particles, the Stokes law is a fairly good approximation of free settling velocity with Reynolds number Re < 0.5 (Re = $w_{k0}d_k/\upsilon$). For higher Reynolds number, the effects of inertia and virtual mass have to be accounted for. Due to the effect of flow separation behind the falling particle, the value of the drag coefficient depends strongly on the level of free stream turbulence, apart from turbulence caused by the particle itself. In this case, the formulas reported in van Rijn (1984a) are applied. Two separated parts are involved in coarse sediment transport, namely suspended-load and bed-load. The formulas introduced in van Rijn (2000) are used for calculating the bed-load transport rates. For suspended-load transport, the bottom sediment re-suspension and deposition are given by

$$E_{k} = c_{a,k} \left(\frac{K_{v}}{\Delta z} \right)$$

$$D_{k} = c_{1,k} \left(\frac{K_{v}}{\Delta z} + w_{k} \right)$$
(7)

where K_{v} is the vertical diffusion coefficient at the bottom of the lowest σ -layer, which is derived from the second order turbulence closure model, Δz is the vertical distance from the reference level *a* to the center of the lowest σ -layer, $c_{1,k}$ is the kth sediment

Numerical Flow and Sediment Modeling – Set-up, Calibration and Validation – Kitimat Arm 31

concentration at lowest σ -layer, and $c_{a,k}$ is the sediment reference concentration at the reference level *a*, which is determined from (van Rijn, 1984b)

$$c_{a,k} = 0.015 f_k \eta_k \rho_{s,k} \frac{d_k^{0.7}}{a} \frac{\left[\left(u_* / u_{*,k} \right)^2 - 1 \right]^{1.5}}{\left[\left(\rho_{s,k} / \rho - 1 \right) g / \upsilon^2 \right]^{0.1}}$$
(8)

where η_k is the user-specified calibration parameter for kth sediment, u_* is the shear velocity due to current and wave, g is the gravitational acceleration, and $u_{*,k}$ is the critical shear velocity for incipient motion of kth sediment. In determining $u_{*,k}$, the hiding and exposure factor of non-uniform coarse sediment bed is taken into account due to the work by Wu, et al. (2000) as follows

$$u_{*,k} = \left[\left(\frac{\rho_{s,k}}{\rho} - 1 \right) g d_k \mathcal{G}_c \left(\frac{p_{h,k}}{p_{e,k}} \right)^m \right]^{0.5}$$
(9)

where ϑ_c is the non-dimensional critical shear velocity corresponding uniform sediment or the mean size of bed materials, *m* is the empirical constant ($\cong 0.6$), and $p_{h,k}$ and $p_{e,k}$ are respectively the total hidden and exposed probabilities of kth non-cohesive sediment.

In the morphological module, an acceleration factor, f_m (≥ 1.0), is introduced in dealing with time scale difference between hydrodynamics and morphodynamics. The bottom elevation changes at any model grid cell (i,j) is given by

$$\Delta h_{i,j} = \sum \left[(\Delta S_{bed})_{i,j} + (\Delta S_{sus})_{i,j} \right] f_m dt \tag{10}$$

where $(\Delta S_{bed})_{i,j}$ is the ratio of bed-load rate net change into or out off the model grid cell (i,j) to the dry weight of bottom sediment, $\rho_{d,k}$, and $(\Delta S_{sus})_{i,j}$ is the ratio of net bottom erosion and deposition to the dry weight of bottom sediment, and is determined by

$$(\Delta S_{sus})_{i,j} = \sum_{k=1}^{K} \frac{(D_k - E_k)_{i,j}}{\rho_{d,k}}$$
(11)

where *K* is the total number of sediment fractions.

Module Integration and Coupling

COCIRM-SED was developed in a fashion that carefully integrates and couples sub-modules together within the same computational framework, except the wave

module SWAN, which runs externally (Figure 1). Changes in wave conditions occur over time scales of hour to days while circulation and sediment dynamics can have shorter time scales, and moreover, modeling spectral wave transformations has a very high demand on computer physical memory. It is hence more economic and efficient to run the wave model SWAN externally and input the simulated wave parameters (e.g., wave forces, significant wave height, wave period, wave length and wave direction) into COCIRM-SED. At every time step, COCIRM-SED interpolates wave parameters from the output of SWAN, and inputs them to other modules. The buoyancy effects due to salinity, temperature and suspended sediments on the circulations are all taken into account, and the state function of the bulk density of water is read as follows

$$\rho(\theta, s, c) = \rho_0(\theta, s) + \sum_{k=1}^{K} \left(1 - \frac{\rho_0(\theta, s)}{\rho_{s,k}} \right) c_k$$
(12)

where $\rho_0(\theta, s)$ is water density under the effect of salinity and temperature. The feedback of morphodynamics to other physical processes is made possible by changing the bottom elevation derived from Eq. (10) at every time step.

APPENDIX B: DETAILS OF STFATE PARAMETERS USED

A brief description of the methods used in STFATE is presented in section C2 of US EPA and USACE (1991). In this appendix, the parameter values which were used are tabulated.

Table 2:	List of STFATE material parameters.	
----------	-------------------------------------	--

	specific.	volume	Fall	Deposit	Critical	Cohesive	Stripped
	gravity	fraction	vel	void	Shear (Y/N)		during
			(ft/s)	ratio	Stress		Descent
					(lb/ft^2)		(Y/N)
silt	2.65	0.264	0.010	4.5	0.0085	Y	Y
clay	2.65	0.216	0.002	7.5	0.0038	Y	Y
clumps	1.60	0.520	3.000	0.4	0.0200	Ν	Ν

Table 3: List of additional STFATE parameters. All default values were used.

Coefficient	Value
Settling Coefficient	0.000
Apparent Mass Coefficient	1.000
Drag Coefficient for a Sphere	0.500
Form Drag for Collapsing Cloud	1.000
Skin Friction for Collapsing Cloud	0.010
Drag for an Ellipsoidal Wedge	0.100
Drag for a Plate	1.000
Friction Between Cloud and Bottom	0.010
4/3 Law Horiz. Diff. Dissip. Factor	0.001
Unstratified Water Vert. Diff. Coeff.	0.025
Ratio – Cloud/Ambient Density	0.250
Gradients	
Turbulent Thermal Entrainment	0.235
Entrainment in Collapse	0.100
Stripping Factor	0.003

Spatial Distributions of Suspended Sediment Concentrations and Sediment Deposition From Marine Terminal Dredging Operations

Prepared for:

Jacques Whitford Ltd. Burnaby B.C. Canada Attn: Janine Beckett and Ben Wheeler

Prepared by:

David Fissel, Jianhua Jiang and Keath Borg

ASL Environmental Sciences Inc, 1986 Mills Road, Sidney, BC, V8L 5Y3 Canada Ph: 250-656-0177 Email: dfissel@aslenv.com ASL Project PR-573

June 2006

Acknowledgements

Jacques Whitford Ltd:

- Janine Beckett (JWL)
- Ben Wheeler, GEM Marine Project Manager (JWL)
- Pamela Walton (JWL)
- Jason Thompson (JWL)
- Tony Dinneen (JWL)

ASL:

- Vincent Lee (graphical displays)
- Dave English (technical and mapping assistance)
- Bernadette Fissel (administrative assistance)

Citation for this report:

Fissel, David, Jianhua Jiang and Keath Borg, 2006. Spatial Distributions of Suspended Sediment Concentrations and Sediment Deposition from Marine Terminal Dredging Operations Unpublished report for Jacques Whitford Ltd., Burnaby B.C., Canada by ASL Environmental Sciences, Sidney, BC, Canada. v + 27 p.

ASL Environmental Sciences Inc, Sidney, BC © 2006

i

Executive Summary

As part of the Enbridge Gateway Project, a major marine terminal is proposed for the northwest coastline of Kitimat Arm (Figure 1). As an input to the assessment of potential environmental effects of the project, the 3D coastal circulation and sediment model, COCIRM-SED, was used for computing suspended sediment concentrations (TSS) and deposition of sediments in Kitimat Arm resulting from dredging operations at the Enbridge Gateway Marine Terminal.

The COCIRM 3-D numerical circulation model has been widely used in coastal ocean and river applications over the past several years. A realistic numerical model domain was created for the full area of Kitimat Arm as well as Kildala Inlet. The model domain has a total length of 29.8 km and a width of 11.8 km. In the horizontal, the model has grids of size 100 m by 100 m over the full domain, and within 2 km of the marine terminal area, a high resolution nested grid of 20 m by 20 m is used. The model has 20 layers in the vertical spanning water depths to from the surface to 360 m. The model was used to compute the currents with forcing at the open boundary using tidal heights measured in March 2006 as well as with measured winds and river runoff. The release of sediments to the ocean during dredging operations is taken to be 1% of the total dredged sediments which is expected to require about 14.7 days of continuous operations. The distribution of the released sediments is taken from laboratory analyses of bottom sediment samples collected for the Gateway project. The 3-D model was calibrated and validated using Gateway measurements made from January to April 2006.

The model simulations of total suspended sediment (TSS) concentrations from the dredging operation indicates that TSS values are low at the surface being generally less than 0.25 mg/l except in the immediate vicinity of the dredging barge with a maximum TSS value is 2.7 mg/l. Naturally occurring TSS values fall in this same range of values or are higher during major river freshet events. At depths of 10 to 20 m, the area with TSS values exceeding 2.5 mg/l are confined to areas within 200 m of the dredging location, with peak values at the dredging barge of up to 58 mg/l. A very diffuse sediment plume having TSS values of 0.25 to 2.5 mg/l occurs as a band of approximately 300 m width extending up to 3 km along the coastline. This diffuse band of sediments would be difficult to detect as the naturally occurring TSS values are comparable in magnitude. The TSS values are generally reduced at greater depths, although TSS concentrations of 0.25 to 2.5 mg/l are computed for depths of 50-70 m after 7 days of dredging operations as the finer silt and clay particles slowly descend to the bottom. The area of this diffuse plume extends over distances of 2 km along the coast and up to 1 km from the coast.

The model was used to compute the total deposition of the sediment released during dredging operations. The maximum thickness of deposited sediments is 1.1 cm and generally much less than this. The area of sediment deposition with a thickness exceeding 0.1 cm is largely confined to the immediate zone of dredging activities. Outside of this disturbed area, the amount of deposition is less than 0.1 cm and typically much less at 0.0025 to 0.05 cm.

Table of Contents

ACK	NOWLEDGEMENTSI
EXEC	UTIVE SUMMARY II
Table	of Contentsiii
List of	f Figuresiv
List of	f Tablesv
1.	PROJECT OVERVIEW AND OBJECTIVES 6
1.1	Project Overview and Background6
2.	NUMERICAL MODELING METHODS7
2.1	ASL-COCIRM-SED Basic Description and Previous Applications7
2.2	ASL-COCIRM-SED Implementation for VITR Landing Sites Modeling7
3.	PROJECT INFORMATION AS REPRESENTED IN THE MODEL
3.1	Dredging Activities at Enbridge Gateway Marine Terminal11
3.2	Dredging Activities - Assumptions
3.3	Initial Dilution of Sediments Discharged from Dredging Operations
3.4	Suspended Sediment Background Values14
4.	MODEL RESULTS
4.1	Suspended Sediments From Dredging16
4.2	Deposited Sediments from Dredging
5.	REFERENCES AND LITERATURE CITED

List of Figures

Figure 1: Map of Kitimat Arm showing the area of the Marine Terminal Area and Tank Farm (in orange)
Figure 2: The model domain for Kitimat Arm. Also show is the bathymetry, reduced to the lowest normal tide (chart datum, used by the model
Figure 3: Map of the planned locations of the marine terminals where dredging activities will occur. 11
Figure 4: A map of the sediment size sampling locations (red dots), and the dredging site (green circle)
Figure 5: Model Derived TSS values (mg/l) after 80 hours of dredging for the surface layer (left)
and for 10-13 m depth (right). The details of the TSS distribution in the immediate vicinity of
the marine terminal is shown in the inset in the upper left of each panel
Figure 6: : Model-derived TSS values (mg/l) after 80 hours of dredging for 16-20 m depth (left) and
for 50-70 m depth (right). The details of the TSS distribution in the immediate vicinity of the
marine terminal is shown in the inset in the upper left of each panel
Figure 8: Model Derived TSS values (mg/l) after 7 days of dredging for the surface layer (left) and
for 10-13 m depth (right). The details of the TSS distribution in the immediate vicinity of the
marine terminal is shown in the inset in the upper left of each panel
Figure 9: Model-derived TSS values (mg/l) after 7 days of dredging for 16-20 m depth (left) and for
50-70 m depth (right). The details of the TSS distribution in the immediate vicinity of the
marine terminal is shown in the inset in the upper left of each panel
Figure 10: Model-derived TSS Concentrations after / days at 140 - 180 m water depth
Figure 11: The estimated total deposition after 14.7 days of dredging activity based on scaling up
the model derived deposition after / days by a factor of 2.1
Figure 12: The estimated total deposition in the immediate area of the terminal after 14.7 days of
dredging activity based on scaling up the model derived deposition after 7 days by a factor of
2.1

List of Tables

Table 1: The vertical layer depths (at bottom of layer) and thickness of each layer for the dredging	
and calibration/verification models, and for the disposal models.	9
Table 2: Defining the 5 sediment size classes, based on sediment sample JW1, the proportion and	
the median diameter within each category 1	12
Table 3: Model simulation times by location and water depth used in the numerical model runs 1	4

1. Project Overview and Objectives

1.1 Project Overview and Background

As part of the Enbridge Gateway Project, a major marine terminal will be constructed along the northwest coastline of Kitimat Arm (Figure 1). As an input to the assessment of potential environmental effects of the project, the 3D coastal circulation and sediment model, COCIRM-SED, was used for computing suspended sediment concentrations (TSS) and deposition of sediments in Kitimat Arm resulting from dredging operations at the Enbridge Gateway Marine Terminal.

Figure 1: Map of Kitimat Arm showing the area of the Marine Terminal Area and Tank Farm (in orange).

In this report, we present the results of the numerical modeling simulations of suspended sediment concentrations as well as the estimated levels of deposition of the sediments back to the seabed. The report also describes the COCIRM-SED numerical model itself and the manner in which project activities were represented in the numerical modeling simulations.

ASL Environmental Sciences Inc, Sidney, BC © 2004

2. Numerical Modeling Methods

2.1 ASL-COCIRM-SED Basic Description and Previous Applications

ASL COCIRM-SED integrated modeling approach involves application of ASL's fully 3-D coastal circulation model (COCRIM), combined with Delft Hydraulic's SWAN model for waves and ASL's own sediment transport and morphodynamics modules (Jiang and Fissel, 2006). ASL-COCIRM uses σ -transform, and second order turbulence closure. It solves for the time-dependent, three-dimensional velocities (u, v, w), temperature (T), salinity (s), suspended sediment concentration (TSS), contaminant concentration (C) as well as water surface elevation (ζ) (Jiang, 1999). It also includes the use of multiple particle sizes for sediment dispersal and deposition processes, wetting/drying and nested sub-grid schemes, capable of incorporating tidal flats, jet-like flows and relatively small interested areas. Grid sizes can range from <10 m to kilometers in size. The sediment transport and morphodynamics modules within COCIRM-SED follow the accepted practices and understandings of sediment dynamics as derived from the current scientific and engineering publications. These modules operate as subroutines and functions within the COCIRM model. The basis of the COCIRM application to sediment transport is based on extensive previous work in this application area (Jiang et al, 2004; Jiang and Mehta, 2000).

The COCIRM 3-D numerical circulation model has been widely used in coastal ocean and river applications over the past several years, including recent projects involving environmental assessment issues:

- numerical modeling of cooling water recirculation at Burrard Thermal Generating Station for BC Hydro, which involved modeling of the extensive tidal flats at the eastern end of the Arm (Jiang et al., 2003; Jiang and Fissel, 2004);
- high resolution model of three dimensional flows, water levels and temperatures at the confluence of the Columbia and Pend d'Oreille Rivers, for the Waneta Expansion Project presently under review by the BC EAO (Fissel and Jiang, 2002);
- numerical modeling of tidal currents and water properties in Canoe Pass and Discovery Passage off Northern Vancouver Island (2005) (Jiang and Fissel, 2005);
- high resolution modeling of currents and suspended sediment concentrations and depositions at four landing sites for underwater electrical cables to be installed by the British Columbia Transmission Corp. across the southern Strait of Georgia and Trincomli Channel (in progress).

2.2 ASL-COCIRM-SED Implementation for VITR Landing Sites Modeling

A realistic numerical model domain was created for the full area of Kitimat Arm as well as Kildala Inlet (Figure 2). The model domain has a total length of 29.8 km and a width of 11.8 km. In the horizontal, the model has grids of size 100 m by 100 m over the full domain, and within 2 km of the marine terminal area, a high resolution nested grid of 20 m by 20 m is used

Figure 2: The model domain for Kitimat Arm. Also show is the bathymetry, reduced to the lowest normal tide (chart datum, used by the model.

In the vertical, the model represents the water column is represented as 20 vertical z-coordinate layers before chart datum (Table 1) are unevenly distributed in order to allow more realistic representation of depths in the marine dredging area and the upper layer where velocities have larger vertical gradients. There is also one layer above chart datum which is used to represent the variability of water levels due to the tides and other forcing conditions.

Cal/Ver	Thickness
(m)	(m)
2	2
4	2
7	3
10	3
13	3
16	3
20	4
25	5
30	5
40	10
50	10
70	20
100	30
140	40
180	40
220	40
260	40
310	50
360	50
	Cal/Ver (m) 2 4 7 10 13 16 20 25 30 40 50 70 100 140 140 180 220 260 310 360

Table 1: The vertical layer depths (at bottom of layer) and thickness of each layer for the dredging and calibration/verification models, and for the disposal models.

Water depths are represented in the model on the scale of the horizontal grid dimensions. The water depths were obtained from digital versions of the Canadian Hydrographic Service Nautical chart numbers 3736 and 3743.

Model Forcing, Calibration and Validation

The model circulation results from (a) the tidal and other forcing through time varying water levels on the open southern boundary of the model domain, derived from measurements made for the Enbridge Gateway project (see appendices A.7 and A.8 in GEM ,2006) (b) wind measurements from Environment Canada's Nanakwa Shoal buoy and from river runoff through the Kitimat River at the northern open boundary of the model domain and through discharges representing outflows through Bish Creek, Jesse Lake and Kildala Arm. Initial temperature, salinity and density distributions within the model domain and along its open southern boundary are derived from oceanographic data collected for this project in April 2006 (Appendix A.8 in GEM, 2006).

Measurements of ocean currents made near the terminal site were used to calibrate and validate the 3-D numerical simulations of circulation made by the model. For more details on the 3-D numerical model and its calibration and verification, please see the companion report (Fissel et al., 2006).

The model is operated on computation time step corresponding to 15 s in real-world time. For this purposes of modeling simulations of the fate of the sediments released in dredging, the 3-D numerical model was operated for a period of 7 full days, for the period of March 10 to 16, 2006. Dredging model activities were simulated at six individual locations for one-half of the total duration at the planned dredging activity as summarized in Table 3. The total computer time to run the model on a very fast PC Windows computer is approximately 3 days.

ASL Environmental Sciences Inc, Sidney, BC © 2006

3. Project Information As Represented in the Model

3.1 Dredging Activities at Enbridge Gateway Marine Terminal

The model based simulations of TSS are derived from Marine Terminal Project Description in Volume 6. Dredging will be conducted within the 8 week period from Feb. 11 to Apr. 4, 2008. The dredging will take place at each of the two tankers berths (oil berth and condensate berth) in the amount of 7,200 m3 per berth as well as a smaller volume of 725 m3 at the construction berth (see Figure 1). The area of the dredging at each of the major berths is approximately 32 m by 150 m to a depth of 1.5 m. The dredging operations will be conducted in water depths ranging from 10 to 30 m.

Figure 3: Map of the planned locations of the marine terminals where dredging activities will occur.

Based on a historical regional study of bottom sediments (Bornhold, 1983), the bottom sediments are predominantly muds, with a vertical gradation of silts on the surface and clays at greater depths. Detailed measurements of the grain size analysis were made in a laboratory study using bottom grab samples collected for this project in March of 2006, at 12 sites in total. The sediments have been analyzed at several sites in the area of the proposed dredging area (Figure 4). The closest location is site 1. An overlay of the cumulative size distributions shows negligible differences compared to adjacent sites 2 and 6.

Figure 4: A map of the sediment size sampling locations (red dots), and the dredging site (green circle).

Based on the site 1 sediment size distribution, the proportion of sediments within 5 size classes was identified (Table 1). Median diameters are also calculated in preparation for the calculation of suitable settling velocities.

Table 2: Defining the 5 sediment size classes, based on sediment sample JW1, the proportion and the median diameter within each category.

Start Diameter	Category Name	Stop Diameter	Proportion (%)	Median Diameter	
(mm)		(mm)		(mm)	
0.000	clay	< 0.002	13.30	0.001	
0.002	fine silt	0.016	53.86	0.007	
0.016	med silt	0.031	17.63	0.022	
0.031	coarse silt	0.063	9.81	0.043	
0.063	sand	2.000	5.40	0.098	

For clay and fine silts, the process of flocculation can be important. Flocculation results from the cohesive attraction of very small particles into larger clumps or flocs, consisting of many very small particles plus water, if the concentrations are sufficiently large. Flocculation typically occurs when the suspended sediment concentrations are in the range of 100 to 1000 mg/L or larger. Such

concentrations are possible due to episodic release of sediments off the bottom and while being raised through the water column which occurs at time scales of a minute or so out of a total time sale of a few minutes to complete one full sediment removal step. In considering the episodic nature of the sediment releases, the initial Total Suspended Sediment (TSS) concentrations are calculated to be over 100 mg/L for short periods of time which will likely trigger flocculation. For the clay, fine silt, and medium silt categories, particles which better represent the flocs actual settling velocity, were introduced into the model.

The duration of the dredging operations is estimated to be 7 days, on a 24 hour per day operation, to complete the requirements at each of the major marine terminals. Dredging at the construction and excavation berth will be completed in less than one day.

The dredging will be conducted with clamshell buckets that capture the dredged materials from the bottom, raising the closed bucket through the water column and then depositing the materials into a dredge barge for disposal at an approved location elsewhere. The disposal of the dredged materials is not dealt with in this analysis.

3.2 Dredging Activities - Assumptions

Dredging will be carried out to minimize the release of sediments to the water column. The potential release processes include (Schroeder and Ziegler, 2004): the bottom wake arising from capturing the sediment in the clamshell bucket and expulsion during closing, stripping of sediments from the shovel while rising through the water column, draining during slewing and washing from descent through the water column. Also it is possible that loads can be lost due to debris.

Based on a historical review of dredging operations, Schroeder and Ziegler (2004) provide a range of loss rates of 0.2 to 3% for closed mechanical dredges. In this simulation, the loss rate was taken to be 1%. We further assume that one-half of the total loss will occur within 5 m of the bottom due to a combination of: capturing the sediment; expulsion of sediments when closing the bucket; and during the initial raising of the bucket through the water column. The remaining 50% of the losses are assumed to be evenly distributed through the upper 20 m of the water column.

The release rate is computed as 1% of 7500 m³ for a total release volume of 75 m³ which occurs over a 7 day period for a rate of 10.714 m³/day or 0.000124 m³/s. Taking the sediment density as 2650 kg/m³, the mass release rate is 0.3286 kg/s. Since the computations are made over a duration of several days, the release rate is taken to be continuous in time, rather than episodic over periods of minutes.

The model is operated on computation time step corresponding to 15 s in real-world time. For this purposes of modeling simulations of the fate of the sediments released in dredging, the 3-D numerical model was operated for a period of 7 full days, for the period of March 10 to 16, 2006. Dredging model activities were simulated at six individual locations for one-half of the total duration at the planned dredging activity as summarized in Table 3. The total computer time to run the model on a very fast PC Windows computer is approximately 3 days.

			Water			Dredged	simulation
Oil Berth	East	North	Depth (m)	Notes	Separation (m)	Volume (m^3)	time (hours)
1	518,836.80	5,977,103.70	21.7	moved 10 m to west	118	7500	40.00
2	518,874.20	5,977,215.12	18	moved 10 m to west			40.00
Condensate Berth							
1	518,955.70	5,977,592.70	20.4		117	7500	40.00
2	518,963.60	5,977,709.60	30	moved 5 m to west			40.00
Excavation Berth							
1	519,001.20	5,977,965.00	14	moved 210 to east	50	725	4.00
2	519,004.50	5,978,014.90	20	moved 10 m to east			4.00
Total							168.00

Table 3: Model simulation times by location and water depth used in the numerical model runs.

3.3 Initial Dilution of Sediments Discharged from Dredging Operations

The dilution of the sediments into the water zone is estimated to be over an initial mixing zone scale size of 4 m² centred on the dredge bucket (Schroeder and Ziegler, 2004). Based on the instantaneous sediment release rates (with the bucket being raised at an average speed of 0.5 m/s through the water column once every 2 minutes), the initial suspended sediment concentrations are computed as having maximum instantaneous values of up to: 800 mg/L in the lower 5 m of the water column for the combined three categories of silt, 130 mg/l for clay and 50 mg/L for silt. In the upper portion of the water column the maximum instantaneous concentrations are reduced by a factors ranging from 2 to 5 depending on the actual water depths in which the dredging is taking place. From these initial concentrations, flocculation of sediments occurs for clays and silts in the bottom 5 m of the water column and silts only in the upper parts of the water column, as the concentrations of clays are too low in this upper zone. The time scale for these comparatively large (see below) TSS values are limited to periods of several minutes and to horizontal distance scales of < 100 m.

Due to ocean currents and other causes of ocean turbulence, these initial TSS concentrations arising from a single raising of the dredge bucket will be reduced to values of up to 10 mg/L in the lower part of the water column and smaller values in the upper portions of the ocean. These mixed values are represented by the numerical model on the 20 m by 20 m horizontal grid size. The transport of the sediments away from the dredging operation depends primarily on the ocean currents as computed by the numerical model. Over the 2 minute (120 s) time frame between raising the dredging bucket, the TSS values vary according to the rate at which ocean currents move the sediments away from the dredging location over the 2 minute time scales. When currents are small, say < 0.05 m/s, the water and sediments move a distance of < 6 m, so the TSS values will tend to increase above the diluted levels from a single dredging operation.

3.4 Suspended Sediment Background Values

The ambient (background) surface values of TSS within Bush Cove and in the portion of Kitimat adjacent to Bish Cove are between 3 and 25 mg/l in winter (Hatfield Consultants Ltd., 1982 and JWL, 1997). The higher ranges of surface TSS values are likely due to runoff from local rivers and creeks that contain sediments of terrestrial origin (JWL, 1997). TSS levels are markedly reduced at depths below the river plume levels and at locations in Kitimat Arm that further away from local rivers. McDonald (1983) reports TSS values of 0.3 to 1.02 mg/l at water depths of 1 and 5 m at three sites in Kitimat Arm with a surface value of 5.9 mg/l at a site near the Kitimat River (McDonald, 1983). During the time of the major freshet on the Kitimat River in May-July and possible during a secondary freshet in October, surface values of TSS in Kitimat Arm could be larger (McDonald, 1983). Overall, naturally occurring TSS values are expected to be in the range of 0.5 to 2.5 mg/l except during major freshet events when surface value can exceed 20 mg/l. In the immediate vicinity of small rivers and creeks, surface values can also exceed 20 mg/l.

4. Model Results

4.1 Suspended Sediments from Dredging

The first sets of SSC model results represent the suspended sediments after 80 hours or 3 1/3 days, of dredging activities at the oil tanker terminal berth. The results are presented at for horizontal layers at water depths of 0-2 m, 10-13 m (Figure 5), 16-20 m, 50-70 m (Figure 6) and 140-180 m (Figure 7).

The increased levels of TSS (TSS > 0.5 mg/l) at the surface resulting from dredging are distributed as a narrow along shore band with a width of < 100 m extending approximately 2 km to the north. Very low concentrations (0.05-0.25) are also present in the form of a narrow band to the south of the terminal and an extension of this band, situated offshore of Elmsley Cove, each with a length of 3-4 km and a width of 200 - 300 meters. The TSS values are always less than 0.25 mg/L except immediately adjacent to the active dredging location (up to 2.7 mg/L). In the surface layer, naturally occurring TSS values can be 2.5 mg/L or greater.

At intermediate water depths of 10-13 m and 16-20 m, the dredging sediment plume has somewhat higher values associated with larger area of TSS values exceeding the range of background levels of 0.3 to 2.5 m. The maximum values are 4.6 mg/l at depths of 10-13 m and 58.4 mg/l at 16-20 m, although TSS values exceeding 2.5 mg/l are limited to areas within of less than 200 m of the instantaneous dredging activity. A larger, lower concentration plume extends to the northwest. The portion of this plume with marginally detectable TSS values (0.25 to 2.5 mg/l) extends as band of up to a few hundred metres width up to 3 km from the dredging activity at 10-13 m and 16-20 m depth.

At deeper depths of 50-70 m and 140-180 m, the SSC values are even lower, with maximum values of 0.45 and 0.1 mg/l, respectively. At these greater depths, the TSS values resulting from dredging would be nearly undetectable.

The second set of displayed model results for TSS represent the suspended sediments after 168 hours, or 7 days, of dredging operation with the dredge having worked at all three terminal sites (see Table 3 for details). The distribution of TSS values at the same selected layers (as used for 80 hour runs) are presented in Figure 8 (0-2 m and 10-13 m depth), Figure 9 (16-20 m and 50-70 m depth) and Figure 10 (140-180 m depth).

After 7 days, the continuing advection of the cumulative discharge of suspended sediments has come into an approximate balance with the losses of suspended sediments due to dilution and deposition to the seabed, as can be seen by comparable size of the sediment plumes with those computed for 80 hours of dredging. At the surface level of 0-2 m (Figure 8), the TSS levels after 7 days are actually lower than after 80 hours (maximum value of 1.1 mg/l vs. 2.7 mg/l) and the area

of TSS values > 0.25 mg/l is smaller. The changes results from stronger currents after 7 days which results in greater dispersal of sediments and lower TSS values.

The TSS distributions after 7 days of dredging at depths of 10-13 and 16-20 m (Figure 8 and Figure 9) have somewhat reduced maximum values of 3.8 mg/l and 6.7 mg/l, respectively, from the distributions after 80 hours. However, similar patterns of enhanced TSS values extend alongshore to the north-northeast for distances of up to 2.5 km.

At depths of 50-70 m (Figure 9) the TSS values are somewhat larger (peak values of 3.3mg/l) than after 80 hours with TSS values exceeding 0.25 mg/l, which extends up to 2 km to the north-northwest and up to 1 km in width. These somewhat larger values at greater depths result from the settling of the finer sediment particulates, particularly silts and clays, which take several days to settle to the bottom in water depths of 100 m or more.

At depths of 140-180 m (Figure 10), TSS values are always less than 0.05 mg/l, well below measurable levels.

Figure 5: Model Derived TSS values (mg/l) after 80 hours of dredging for the surface layer (left) and for 10-13 m depth (right). The details of the TSS distribution in the immediate vicinity of the marine terminal are shown in the inset in the upper left of each panel.

ASL Environmental Sciences Inc, Sidney, BC © 2006

Figure 6: : Model-derived TSS values (mg/l) after 80 hours of dredging for 16-20 m depth (left) and for 50-70 m depth (right). The details of the TSS distribution in the immediate vicinity of the marine terminal are shown in the inset in the upper left of each panel.

Figure 7: Model-derived TSS Concentrations after 80 hours at 140 - 180 m water depth.

Sediment Plume and Dispersion Modeling for Dredging at Marine Terminal Sites in Kitimat Arm

Figure 8: Model Derived TSS values (mg/l) after 7 days of dredging for the surface layer (left) and for 10-13 m depth (right). The details of the TSS distribution in the immediate vicinity of the marine terminal are shown in the inset in the upper left of each panel.

Sediment Plume and Dispersion Modeling for Dredging at Marine Terminal Sites in Kitimat Arm

Figure 9: Model-derived TSS values (mg/l) after 7 days of dredging for 16-20 m depth (left) and for 50-70 m depth (right). The details of the TSS distribution in the immediate vicinity of the marine terminal are shown in the inset in the upper left of each panel.

Figure 10: Model-derived TSS Concentrations after 7 days at 140 - 180 m water depth.

4.2 Deposited Sediments from Dredging

The total deposition of the sediment released during dredging operations is presented in Figure 11 for Kitimat Arm and in Figure 12 for the Marine Terminal area. The maximum thickness of deposited sediments is 1.1 cm and generally much less than this. The area of sediment deposition with a thickness exceeding 0.1 cm is largely confined to the immediate zone of dredging activities. Outside of this disturbed area, the amount of deposition is < 0.1 cm and typically much less at 0.025 to 0.05 cm.

The area where deposition exceeds 1.0 cm is limited to 400 m^2 , in the one grid cell that had 1.1 cm. The area with depositions exceeding 0. 5 cm, is limited to small zones within the two main terminal sites, covering a total area of 1,600 m². Within the immediate area of the two main marine terminals (Figure 12), the total deposition > 0.1 cm extends over an area of 150 along the shore m by 40 m across.

Most of the sediment is widely dispersed over an extended alongshore band of approximately 4 km length and 400 m width. Typical sediment deposition levels in this area are very low, in the range of 0.001 to 0.1 cm.

Figure 11: The estimated total deposition after 14.7 days of dredging activity based on scaling up the model derived deposition after 7 days by a factor of 2.1

Figure 12: The estimated total deposition in the immediate area of the terminal after 14.7 days of dredging activity based on scaling up the model derived deposition after 7 days by a factor of 2.1.

5. References and Literature Cited

Bornhold, B.D., 1983. Sedimentation in Douglas Channel and Kitimat Arm. In: MacDonald, 1983. Proceedings of a Workshop on the Kitimat Marine Environment. Can. Tech. Rep. Hydrogr. Ocean Sci., 18, 88-115.

Fissel, D., J. Jiang and K. Borg, 2006. 3-D Numerical Modeling of Sediment Dispersion and Transport for Marine Dredging and Terrestrial Disposal Activities of the Enbridge Gateway Project. Unpublished Report for Jacques Whitford Limited, Burnaby B.C. by ASL Environmental Sciences Inc., Sidney, B.C., vi + 33 p.

Fissel, D.B., R. Birch and J. Jiang, 2002. Three dimensional computational flow modeling and high resolution flow surveys for fisheries environmental studies on the upper Columbia River. Proceedings, Hydrovision 2002, Portland OR, July 2002.

GEM 2006. Marine Physical Environment. Unpublished report for Enbridge Gateway Project, Edmonton, Alberta by the Gateway Environmental Management Team – ASL Environmental Sciences Inc.

Hatfield Consultants Ltd. 1982. Preliminary Environmental Field Survey for Bish Cove, Hatfield Consultants Ltd. for PetroCanada, Vancouver.

Jacques Whitford Environment Limited (JWL). 2006. Bish Cove Addendum to Kitimat LNG Terminal Environmental Assessment Certificate Application. Report to BC Environmental Assessment Office and Canadian Environmental Assessment Agency as prepared for Kitimat LNG Terminal Project by Jacques Whitford Environment Limited, Calgary. 139 p.

Jacques Whitford Environment Limited (JWL). 1997. Bees Cove and Bees Creek Existing Environment: Technical Data Report (TDR). Report prepared for Haisla Nation and Bechtel Corp. for Haisla Nation Industrial Park Environmental Assessment Screening Document by Jacques Whitford Environment Limited, Calgary. 17 pp.

Jiang, J. and D. B. Fissel, 2006. 3D Hydrodynamic Modeling of Sediment Dynamics on Roberts Bank Fraser River Foreslope, Strait of Georgia, Canada In: Estuarine and Coastal Modeling: proceedings of the Ninth International Conference, ed. M.L. Spaulding. American Society of Civil Engineers (in press).

Jiang, J. and D.B. Fissel, 2005. Numerical modeling of flows in Canoe Pass: Phase 1 Report. Report for Focus Environmental on behalf of Canoe Pass Tidal Energy Corp and New Energy Corporation Inc. by ASL Environmental Sciences Inc., Sidney BC, Canada, 28p.

Jiang, J. and D. B. Fissel, 2004. 3D Numerical modeling study of cooling water recirculation. In: Estuarine and Coastal Modeling: proceedings of the eighth international conference, ed. M.L. Spaulding. American Society of Civil Engineers, 512-527.

Jiang, J., N. K. Ganju and A. J. Mehta, 2004. Estimating scour in a firm-clay estuary bed. Journal of Waterway, Port, Coastal and Ocean Engineering, 130(4), 215-218.

Jiang, J., D. B. Fissel and D. Topham, 2003. 3D Numerical modeling of circulation associated with a submerged buoyant jet in a shallow coastal environment. Estuarine, Coastal and Shelf Science, 58, 475-486.

Jiang, J. and A. J. Mehta, 2000. Fine-grained sedimentation in a shallow harbor. Journal of Coastal Research, 16(4), 1146-1150.

Jiang, J., 1999. An examination of estuarine lutocline dynamics, Ph. D. Thesis, University of Florida, Gainesville, p226.

MacDonald, R.W., 1983. The Distribution and Dynamics of Suspended Sediment Particles in the Kitimat Fjord System. Proceedings of a Workshop on the Kitimat Marine Environment. Can. Tech. Rep. Hydrogr. Ocean Sci., 18, 88-115.

Schroeder, P. and C.K. Ziegler, 2004. Understanding, predicting and monitoring contaminant releases during dredging. Paper presented at "Addressing Uncertainty and Managing Risk at Contaminated Sediment Sites", USACE/USEPA/SMWG Joint Sediment Conference, US Army Corps of Engineers, October, 2004. Available at http://el.erdc.usace.army.mil/workshops/04oct-ccs/agenda.pdf

Appendix B Marine Foreshore Survey Species Summary

ys
ļ

			Presence											
Group	Species	Common name	Low intertidal zone				Mid intertidal zone					High inte	rtidal zone	
			2005	2006	2008	2009	2005	2006	2008	2009	2005	2006	2008	2009
Molluscs	Littorina scutulata	Checkered periwinkle	✓	✓										
	Littorina sitkana	Sitka periwinkle	✓	✓		✓	✓	✓						
	Lottia spp	Limpet spp.						✓	✓		✓	✓		
	Mytilus spp/spp complex	Mussel spp.	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Tectura spp	Limpet spp.	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		
Crustaceans	Balanus glandula	Common acorn barnacle	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
	Cthalamus dalli	Small acorn barnacle	✓	✓	✓		✓	✓	✓		✓	✓		
	Hemigrapsus oregonensis	Green shore crab				✓				✓			✓	
	Hemigrapsus nudus	Purple shore crab	✓	✓	\checkmark	✓	\checkmark	✓	\checkmark	✓	✓	✓	✓	\checkmark
	Idotea resecata	Isopod spp.	✓	✓			\checkmark	✓			✓	✓		
	Idotea wosesenki	Isopod spp.					✓				\checkmark			
	Pagurus spp.	Hermit crab				✓								
	Unknown isopod	Unknown isopod			\checkmark				\checkmark					
Red Seaweeds	Ahnfeltia fastigiata	Wiry forked seaweed			\checkmark									
	Ahnfeltiopsis spp	Forked seaweed	✓		✓					✓				
	Ahnfeltiopsis gigartenoides		✓											
	Cladophora	Sea moss	✓	✓			✓	✓			✓	✓		
	Halosaccion glandiforme	Sea sacs or deadman's fingers	✓	✓	✓					✓				
	Hildenbrandia spp	Red rock crust				✓			✓				✓	
	Mastocarpus spp.	Turkish washcloth	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓
	Neorhodomela spp	Black pine			✓				✓	✓				
	Odonthalia spp.	Toothed-twig seaweed	✓	✓	✓			✓						
	Palmaria spp.	Dulse			✓					✓				
	Pteroiphonia app.	Black tassel	✓											
	Polysiphonia spp.	Polly	✓											
		Pink coralline algae	✓	✓	✓	✓								
	Unknown branching Red #1	Unknown red seaweed	✓	✓	✓		✓	✓	✓	✓				✓
	Unknown branching Red #2	Unknown red seaweed	✓	\checkmark						✓				
	Unknown branching Red #3	Unknown red seaweed			\checkmark					\checkmark				
	Unknown branching Red #10	Unknown red seaweed	\checkmark	\checkmark										

Table B-1	Summary of species found in PDA intertidal surveys (cont'd)	
-----------	---	--

								Pres	sence					
Group	Species	Common name		Low inter	tidal zone		Mid intertidal zone				High intertidal zone			
up			2005	2006	2008	2009	2005	2006	2008	2009	2005	2006	2008	2009
Green Seaweeds	Acrosiphonia coalita	Green rope	\checkmark	\checkmark	\checkmark		✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	
	Ulva spp.	Sea lettuce	✓	✓			✓	✓		\checkmark	\checkmark	✓		✓
	Ulva intestinalis	Sea hair	✓	✓	✓		✓	✓	✓		✓	✓	✓	
		Green Crust		✓				✓						
		Unknown Green 1	✓	\checkmark			✓	✓						
Brown Seaweeds	Fucus gardneri	Rockweed	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓
	Laminaria spp	Various large brown kelps			✓					✓				✓
	Laminaria setchellii	Split kelp	✓	✓										
	Ralfsia fungiformis	Fungiform tar spot alga	✓	✓			✓	✓			✓		✓	
	Sargassum muticum	Wireweed	✓	✓			✓	✓						
		Unknown Brown 1	✓	✓			✓	✓						
		Unknown Brown 2	✓	✓										

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-01

Transect FS-06-01 Looking Upward from Low Water Mark

	FIGURE NUMBER:	DATE:	sater	
RN GATEWAY PROJECT	B-1	20100210	orthernG	
	SCALE:	AUTHOR:	APPROVED BY:	ž
ct Survey - Transect FS-06-01	1:150 NP		СМ	104833
	PROJECTION:	DATUM:		iscal
	UTM 9	N	AD 83	21/2009F

orthernGateway_TDR_2009

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-02

Transect FS-06-02 Looking Upward from Low Water Mark

				60	ŝ
v Queen in Right of Canada, Department of Natural Resources. All rights reserved.	Transect FS-06-02 Looking Upward fr	om Low Wa	ter Ma	rk 🖁	Way_Iun_
		FIGURE NUMBER:		DATE:	Date
ENBRIDGE NORTHERN GATEWAT PROJECT		B-2		20100210	011110
		SCALE:	AUTHOR:	APPROVED BY:	ŝ
2006 Intertidal Transect Survey - Transe	ct FS-06-02	1:150	NP	CM 880	10400
		PROJECTION:	DATUM:	-iscal	13/6-
		UTM 9	NA	4D 83	120051

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-03

Transect FS-06-03 Looking Upward from Low Water Mark

		We want the second		
y the Queen in Right of	Canada, Department of Natural Resources. All rights reserved.	from Low Wa	ater Ma	ırk
	ENRRINGE NORTHERN GATEWAY PROJECT	FIGURE NUMBER:		DATE:
	ENDRIDGE NORTHERN GATEWAT PROJECT	B-3		20100210
		SCALE:	AUTHOR:	APPROVED BY:
	2006 Intertidal Transect Survey - Transect FS-06-03	1:150	NP	СМ
			DATUM:	
		UTM 9	N	AD 83

gem

PROJECTION: DATUM: UTM 9 NAD 83

CONTRACTOR

PREPARED BY

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-05

JWA-1048334-2634 Transect FS-06-05 Looking Upward from Low Water Mark REFERENCES: NTDB Topographic Mapsheets provided by the Majesty the Queen in Right of Canada, Department of Natural Resources. All rights reserved. FIGURE NUMBER DATE ENBRIDGE NORTHERN GATEWAY PROJECT 20100210 B-5 Jacques Whitford AXYS Ltd. PREPARED FOR: APPROVED BY SCALE: UTHOR 1:150 NP СМ 2006 Intertidal Transect Survey - Transect FS-06-05 PROJECTION: DATUM: NORTHERN

Cobble 50% Boulder 50%

0 m

Unkown

Red #1

Low

3.0 m

NAD 83

UTM 9

JDR.

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-06

Transect FS-06-06 Looking Upward from Low Water Mark

······					1
				DATE:	
AXYS Ltd.	ENBRIDGE NORTHERN GATEWAY PROJECT	B-6		20100210	
PARED FOR:		SCALE:	AUTHOR:	APPROVED BY:	l i
Ca	2006 Intertidal Transect Survey - Transect FS-06-06	1:150	NP	СМ	100101
LUBBIDGE		PROJECTION:	DATUM:	DATE: 20100210 JTHOR: APPROVED BY: NP CM DATUM: NAD 83	
NORTHERN		UTM 9	NAD 83		. 2000

_NorthernGateway_TDR_

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-07

Transect FS-06-07 Looking Downward from High Water Mark

JWA-104833	34-2636				1	5 J						
FERENCES: NTDB Topographic	ENCES: NTDB Topographic Mapsheets provided by the Majesty the Queen in Right of Canada, Department of Natural Resources. All rights reserved.											
			FIGURE NUMBER:		DATE:	70au						
Jacques Whitford AXYS Ltd.		ENDRIDGE NORTHERN GATEWAT PROJECT	B-7		20100210	DITIE						
EPARED BY:	PREPARED FOR:		SCALE:	AUTHOR:	APPROVED BY:	i s						
0	ENBRIDGE	2006 Intertidal Transect Survey - Transect FS-06-07	1:150	NP	СМ	(1040C)						
			PROJECTION:	DATUM:		-BC G						
gem	NORTHERN		UTM 9	N/	4D 83	1200						

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-08

Transect FS-06-08 Looking Upward from Low Water Mark

_			
	FIGURE NUMBER:	DATE:	
	B-8	20100210	
	SCALE:	AUTHOR:	APPROVED BY:
	1:150	NP	СМ
	PROJECTION:	DATUM:	
	UTM 9	N/	AD 83

Dominant Macrophyte Species

 Solution
 Solution
 Mussels

 Barnacles
 Barnacles

 Red Seaweeds
 Green Seaweeds

 Solution
 Brown Seaweeds

 High
 Mid
 Low

Transect FS-06-09 Looking Upward from Low Water Mark

Meters										
JWA-10483	34-2638									
REFERENCES: NTDB Topograph	REFERENCES: NITDB Topographic Mapsheets provided by the Majesty the Queen in Right of Canada, Department of Natural Resources. All rights reserved.									
CONTRACTOR:		ENRRIDGE NORTHERN GATEWAY PROJECT	FIGURE NUMBER:		DATE:					
Jacques Whit	ord AXYS Ltd.	ENDRIDGE NORTHERN GATEWAT PROJECT	B-9		20100210					
PREPARED BY:	PREPARED FOR:		SCALE:	AUTHOR:	APPROVED BY:					
0	Ca	2006 Intertidal Transect Survey - Transect FS-06-09	1:150	NP	СМ					
gem	ENBRIDGE NORTHERN		PROJECTION: UTM 9	DATUM: N	IAD 83					

Dominant Macrophyte Species

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-10

Transect FS-06-10 Looking Downward from High Water Mark

Meters					ę					
JWA-104833	34-2639				act					
REFERENCES: NTDB Topographi	FERENCES: NTDB Topographic Mapsheets provided by the Majesty the Queen in Right of Canada, Department of Natural Resources. All rights reserved.									
CONTRACTOR:		ENDRIDGE NORTHERN CATEWAY PROJECT	FIGURE NUMBER:		DATE:					
Jacques Whitford AXYS Ltd.		ENDRIDGE NORTHERN GATEWAT PROJECT	B-10)	20100210					
PREPARED BY:	PREPARED FOR:		SCALE:	AUTHOR:	APPROVED BY:					
0	Ca	2006 Intertidal Transect Survey - Transect FS-06-10	1:150	NP	CM CM					
gem	ENBRIDGE NORTHERN		PROJECTION: UTM 9	DATUM: N.	AD 83					

Mussels Barnacles

Low

Red Seaweeds

Green Seaweeds Brown Seaweeds

Ĕ

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-12

Transect FS-06-12 Looking Upward from Low Water Mark

	FIGURE NUMBER:		DATE:
ENBRIDGE NORTHERN GATEWAY PROJECT			20100210
	SCALE:	AUTHOR:	APPROVED BY:
2006 Intertidal Transect Survey - Transect FS-06-12	1:150	NP	СМ
	PROJECTION:	DATUM:	
	UTM 9	N	AD 83

_NorthernGateway_TDR_3

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-13

Transect FS-06-13 Looking Upward from Low Water Mark

FIGURE NUMBER:		DATE:	
B-13	B-13		
SCALE:	AUTHOR:	APPROVED BY:	
1:150	NP	СМ	
PROJECTION:	DATUM:		
UTM 9	N	AD 83	

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-14

Transect FS-06-14 Looking Upward from Low Water Mark

2009

JWA-1048	334-2643					Ъ
REFERENCES: NTDB Topograp	phic Mapsheets provided by the Majest	ty the Queen in Right of Canada, Department of Natural Resources. All rights reserved.				way
CONTRACTOR:			FIGURE NUMBER:		DATE:	Gate
Jacques Whi	tford AXYS Ltd.	ENBRIDGE NORTHERN GATEWAT PROJECT	B-14		20100210	ortherr
PREPARED BY:	PREPARED FOR:		SCALE:	AUTHOR:	APPROVED BY:	ž
0	Ca	2006 Intertidal Transect Survey - Transect FS-06-14	1:150	NP	СМ	10483
	ENBRIDGE		PROJECTION:	DATUM:	-	-iscal
gem 🦾	NORTHERN		UTM 9	N	AD 83	12009

0 m

E /

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-15

Transect FS-06-15 Looking Upward from Low Water Mark

		FIGURE NUMBER:		DATE:	
YS Ltd.	ENBRIDGE NORTHERN GATEWAT PROJECT	B-15		20100210	
ED FOR:		SCALE:	AUTHOR:	APPROVED BY:	
Ca	2006 Intertidal Transect Survey - Transect FS-06-15	1:150	NP	СМ	
PPTPCE		PROJECTION:	DATUM:		
ORTHERN		UTM 9	N/	AD 83	

NorthernGateway_TDR_

NORTHE

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-16

Transect FS-06-16 Looking Upward from Low Water Mark

-,,,,					
		FIGURE NUMBER:		DATE:	ł
.	ENBRIDGE NORTHERN GATEWAY PROJECT	B-16		20100210	
		SCALE:	AUTHOR:	APPROVED BY:	
	2006 Intertidal Transect Survey - Transect FS-06-16	1:150	NP	СМ	100101
0.5	·····, ·····	PROJECTION:	DATUM:		1
RN		UTM 9	N	AD 83	10000

gem

Mussels Barnacles Red Seaweeds Green Seaweeds Brown Seaweeds Low

Relative Abundance & Distribution of Flora & Fauna in Transect FS-06-17

JDR.

Relative Abundance & Distribution of Flora & Fauna in Transect FS-08-02

Profile of Intertidal Transect FS-08-02

Transect FS-08-02 Looking Upward from Low Water Mark

Meters					54
JWA-10483	34-2714				ant and
REFERENCES: NTDB Topograph	ic Mapsheets provided by the Majesty	the Queen in Right of Canada, Department of Natural Resources. All rights reserved.			An
CONTRACTOR:		ENDRIDGE NORTHERN CATEWAY DRO LECT	FIGURE NUMBER:		DATE:
Jacques Whit	ord AXYS Ltd.	ENBRIDGE NORTHERN GATEWAT PROJECT	B-19	9	20100210
PREPARED BY:	PREPARED FOR:		SCALE:	AUTHOR:	APPROVED BY:
0	Ca	2008 Intertidal Transect Survey - Transect FS-08-02	1:300	SS	CM Safe
gem	ENBRIDGE NORTHERN		PROJECTION: UTM 9	DATUM: N	AD 83

DATUM: UTM 9 NAD 83

DATE 20100210 APPROVED BY UTHOR SS СМ DATUM: NAD 83

Relative Abundance & Distribution of Flora & Fauna in Transect FS-08-08

Transect FS-08-08 Looking Upward from Low Water Mark

AY PROJECT	FIGURE NUMBER: B-24		DATE: 20100210
sect FS-08-08	SCALE: 1:300	AUTHOR: SS	APPROVED BY: CM
	PROJECTION: UTM 9	DATUM: N	AD 83

2009

Relative Abundance & Distribution of Flora & Fauna in Transect FS-08-09

Transect FS-08-09 Looking Upward from Low Water Mark

					. ≷
		FIGURE NUMBER:		DATE:	ate 0
AXYS Ltd.	ENBRIDGE NORTHERN GATEWAY PROJECT	B-25		20100210	orthern
PARED FOR:		SCALE:	AUTHOR:	APPROVED BY:	N
Ca	2008 Intertidal Transect Survey - Transect FS-08-09	1:300	SS	СМ	1104833
LUDDIDCT.		PROJECTION:	DATUM:		0.00
NORTHERN		UTM 9	N	AD 83	1 200 0

NorthernGateway_TDR_2009

DATUM: UTM 9 NAD 83

gem

Relative Abundance & Distribution of Flora & Fauna in Transect FS-09-02

Transect FS-09-02 Looking Downward from High Water Mark

		FIGURE NUMBER: B-31		DATE:
	ENDRIDGE NORTHERN GATEWAT PROJECT			20100210
-		SCALE:	AUTHOR:	APPROVED BY
	2009 Intertidal Transect Survey - Transect FS-09-02	1:150	SS	СМ
			DATUM:	-
		UTM 9	NA	\D 83

VorthernGateway_TDR_2009

gem

cal/1048334_

JDR.

DATUM: NAD 83

UTM 9

Ĕ

NAD 83

UTM 9

NAD 83

UTM 9

Relative Abundance & Distribution of Flora & Fauna in Transect FS-09-06

Transect FS-09-06 Looking Upward from Low Water Mark

Meters						6003
4-10483	34-2654					TDR
B Topograph	c Mapsheets provided by the Majesty	y the Queen in Right of Canada, Department of Natural Resources. All rights reserved.			, , , , , , , , , , , , , , , , , , ,	way
		ENBRIDGE NORTHERN GATEWAY PROJECT	FIGURE NUMBER:		DATE:	mGate
es Whitf	ord AXYS Ltd.		B-35		20100210	orthe
	PREPARED FOR:		SCALE:	AUTHOR:	APPROVED BY:	34 N
	Ca	2009 Intertidal Transect Survey - Transect FS-09-06	1:150	SS	CM	10483
4	ENBRIDGE	PROJECTION:	DATUM:		Fiscal	
	NORTHERN		UTM 9	N.	AD 83	31/2005

Relative Abundance & Distribution of Flora & Fauna in Transect FS-09-07

FIGURE NUMBER:		DATE:
B-36		20100210
SCALE:	AUTHOR:	APPROVED BY:
1:150	SS	СМ
PROJECTION:	DATUM:	
UTM 9	N/	AD 83

TDR

20100210 APPROVED BY

Ĕ

NAD 83

UTM 9

DATE

СМ

NORTHERN

gem

DATUM: NAD 83 UTM 9

DATE:

20100210

APPROVED BY

СМ

334_NorthernGatew

iscal\104833

20100210 APPROVED B

DATUM: NAD 83

UTHOR

SS

DATE:

СМ

NAD 83

UTM 9

СМ NAD 83

DATE:

NAD 83

UTM 9

Appendix C Sediment and Seawater Chemistry Testing

C.1 Sediment and Seawater Chemistry Testing from Vizon Scitec

						Seawater S	Samples							Marir	ne Guidelines		
	1	2	2	2	3	4	5	6	7	12	9	10	BC (marir	ne) ¹	CCME (marine) ¹	NO	AA ⁵
Dissolved Metals			(repli	cates)							(refei	rence)	30-Day average	Maximum		СМС	CCC
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Aluminum	<0.10	<0.10	<0.10	<0.10	<0.4	<0.10	<0.10	<0.30	<0.10	<0.10	<0.8	<0.10	-	-	-	-	
Antimony	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	-	-	1.5 ¹	0.5 ¹
Arsenic	<0.00020	0.0012	0.0012	0.0012	0.0013	0.0011	0.0019	0.0011	0.0016	0.0010	0.00079	0.0010	-	-	0.0125	-	-
Barium	0.0082	0.0093	0.0093	0.0091	0.014	0.0083	0.0076	0.0068	0.0074	0.017	0.0076	0.0074	-	-	-	-	-
Beryllium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	-	-	-	-
Bismuth	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	-	-	-	-
Boron	3.9	3.9	3.9	3.8	3.7	3.5	3.6	3.4	3.7	3.5	3.7	3.6	-	-	-	-	-
Cadmium	0.00013	0.00015	0.00015	0.00016	0.00010	0.00012	0.000090	0.00011	0.00013	0.00017	0.00011	0.00011	-	-	0.00012	-	-
Calcium	326	342	342	340	307	310	324	301	318	317	321	319	-	-	-		-
Chromium	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	-	-	0.056^3 ; 0.0015^4	-	-
Cobalt	0.00015	0.000061	0.000061	0.000060	0.00027	0.000061	0.00013	0.000062	0.00010	0.0021	0.000056	<0.000050	-	-	-	-	-
Copper	0.00082	0.00096	0.00096	0.00098	0.00120	0.00092	0.00107	0.00097	0.00117	0.00070	0.00094	0.00079	0.002	0.003	-	-	-
Iron	<0.010	<0.010	<0.010	0.03	<0.010	<0.010	<0.010	<0.010	<0.010	0.043	<0.010	<0.010	-	-	-	-	-
Lead	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	0.002	0.14	-	-	-
Lithium	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	-	-	-	-	-
Magnesium	1130	1190	1190	1180	1050	1070	1120	1040	1120	1080	1110	1140	-	-	-	-	-
Manganese	0.014	0.0070	0.0070	0.0068	0.054	0.0016	0.0095	0.0051	0.011	1.48	0.0020	0.0029	-	-	-	-	-
Mercury	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.00002	0.002	0.000016	-	-
Molybdenum	0.0092	0.0096	0.0096	0.0094	0.0095	0.0089	0.0095	0.0091	0.0087	0.0091	0.0095	0.0081	-	-	-	-	-
Nickel	0.00074	0.00075	0.00075	0.00073	0.00088	0.00071	0.00073	0.00070	0.00076	0.00085	0.00069	0.00061	-	-	-	0.074 ²	0.0082 ²
Phosphorus	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	-	-	-	-	0.0001 ¹
Potassium	347	362	362	356	324	326	341	315	336	332	338	336	-	-	-	-	-
Selenium	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0.00057	<0.00050	<0.00050	<0.00050	0.00099	<0.00050	<0.00050	0.002		-	-	-
Silicon	1.3	1.5	1.5	1.4	1.7	1.3	1.3	1.2	1.3	2.5	1.1	1.1	-	-	-	-	-
Silver	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0015	0.003	-	-	-
Sodium	8460	8820	8820	8640	7860	7960	8290	7680	8180	8050	8280	8210	-	-	-	-	-
Strontium	5.8	5.6	5.6	5.6	5.7	5.2	5.3	5.0	5.5	5.1	5.7	5.4	-	-	-	-	-

Table C-1 Dissolved Metal Concentrations in Seawater

						Seawate	er Samples						
	1	2	2	2	3	4	5	6	7	12	9	10	BC (ma
Dissolved Metals			(repli	cates)							(refe	erence)	30-Day average
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Thallium	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
Tin	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
Titanium	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-
Uranium	0.0018	0.0026	0.0026	0.0027	0.0020	0.0019	0.0023	0.0018	0.0022	0.0022	0.0020	0.0013	-
Vanadium	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-
Zinc	0.0034	0.0017	0.0017	0.0014	0.0012	0.0011	0.0097	0.0070	0.021	0.0097	0.0050	0.0058	-

Table C-1 Dissolved Metal Concentrations in Seawater (cont'd)

NOTES:

Highlighted cells indicate concentrations that exceed applicable guideline and criteria values.

Mercury guidelines and criteria are for inorganic mercury.

¹ Total metal values

² Dissolved metals

³ Chromium 3+

⁴ Chromium 6+

⁵ NOAA criteria were only included if British Columbia or CCME guidelines were not available.

'<' indicates value less than method detection limit

'-' indicates guidelines and criteria not available or not applicable

CCME – Canadian Council of Ministers of the Environment

CMC – criteria maximum concentration is the highest level for a 1-hour average exposure not to be exceeded more than once every 3 years (acute).

CCC – criteria continuous concentration is the highest level for a 4-day average exposure not to be exceeded more than once every 3 years (chronic).

CMC and CCCs are proposed criteria

NOAA – National Oceanic and Atmospheric Administration

	Mari	ne Guidelines		
ir	ne) ¹	CCME (marine) ¹	NO	AA⁵
	Maximum		СМС	CCC
	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	-	-	2.13 ¹	-
	-	-	-	-
	-	-	-	-
	-	-	-	-
	-	-	-	-
	0.01	-	-	-

Table C-2 Non-Halogenated Volatile Concentrations in Seawater

					Seawate	er Sample					Marine G	uidelines
Non-	1	2	3	4	5	6	7	12	9	10	BC	CCME
Volatiles									(refe	rence)	Marine	Marine
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Benzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	110
Ethylbenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	250	215
Toluene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	330	25
Xylenes	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-
NOTES:												

'-' indicates guidelines and criteria not available or not applicable.

'<' indicates value less than method detection limit

CCME – Canadian Council of Ministers of the Environment

						Seawate	er Sample								
	MDL	#1	#2	#3	#4	#5	#6	#7	#12	#9	#10	BC	CCME	NO	\A ¹
PAHs										(refer	ence)	Marine	Marine	СМС	CCC
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Naphthalene	0.05	<0.05	0.11	<0.06	0.11	<0.08	<0.07	<0.08	<0.05	<0.05	<0.05	1	1.4	-	-
Quinoline	0.10	<0.1	<0.1	<0.12	<0.1	<0.16	<0.14	<0.16	0.61	<0.1	0.31	-	-	-	-
2-Methylnapthalene	0.05	<0.05	<0.05	<0.06	<0.05	<0.08	<0.07	<0.08	0.21	<0.05	<0.05	1	-	-	-
Acenaphthylene	0.05	<0.05	<0.05	<0.06	<0.05	<0.08	<0.07	<0.08	<0.05	0.08	<0.05	-	-	300	-
Acenaphthene	0.05	<0.05	<0.05	<0.06	<0.05	<0.08	<0.07	<0.08	<0.05	<0.05	<0.05	6	-	-	-
Fluorene	0.05	<0.05	<0.05	<0.06	0.12	<0.08	<0.07	<0.08	<0.05	<0.05	<0.05	12.0	-	-	-
Phenanthrene	0.05	<0.05	<0.05	0.15	0.31	0.16	<0.07	<0.08	0.35	0.14	0.11	-	-	7.7	4.6
Anthracene	0.05	<0.05	<0.05	<0.06	<0.05	<0.08	<0.07	<0.08	<0.05	<0.05	<0.05	-	-	300	-
Acridine	0.10	<0.1	<0.1	<0.12	<0.1	<0.16	<0.14	<0.16	<0.1	<0.1	<0.1	-	-	-	-
Total LMW-PAHs		N/A	0.11	0.15	0.54	0.16	N/A	N/A	1.17	0.22	0.42	-	-	300	-
Fluoranthene	0.05	0.30	0.41	0.22	1.07	0.10	<0.07	<0.08	1.01	0.13	0.47	-	-	40	16
Pyrene	0.05	0.27	0.39	0.20	0.96	0.09	<0.07	<0.08	0.89	0.09	0.04	-	-	300	-
Benzo(a)anthracene	0.05	0.46	0.76	0.48	1.47	0.18	<0.07	<0.08	1.05	0.05	<0.05	-	-	300	-
Chrysene	0.05	<0.05	<0.05	0.44	1.65	0.25	<0.07	<0.08	1.98	0.10	0.09	0.1	-	-	-
Benzo(b)fluoranthene	0.05	1.48	1.86	1.34	4.69	0.53	<0.07	<0.08	3.94	0.27	0.19	-	-	300	-
Benzo(k)fluoranthene	0.05	<0.05	<0.05	<0.06	<0.05	<0.08	<0.07	<0.08	<0.05	<0.05	<0.05	-	-	300	-
Benzo(a)pyrene	0.05	0.23	0.36	0.13	0.06	<0.08	<0.07	<0.08	0.87	<0.05	<0.05	0.01	-	-	-
Indeno(1,2,3-cd)pyrene	0.05	0.16	0.28	0.15	0.06	<0.08	<0.07	<0.08	0.48	<0.05	<0.05	-	-	300	-
Dibenz(a,h)anthracene	0.05	<0.05	<0.05	<0.06	<0.05	<0.08	<0.07	<0.08	0.08	<0.05	<0.05	-	-	300	-
Benzo(g,h,i)perylene	0.05	0.14	0.25	0.08	0.06	<0.08	<0.07	<0.08	0.05	0.14	0.11	-	-	300	-

Table C-3 Polycyclic Aromatic Hydrocarbon Concentrations in Seawater

						Seawate	r Sample				
DALLA	MDL	#1	#2	#3	#4	#5	#6	#7	#12	#9	#10
PAHS										(refer	ence)
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Total HMW-PAHs		3.04	4.31	3.04	10.0	1.15	N/A	N/A	10.4	0.78	0.90
Total PAHs		3.04	4.42	3.19	10.6	1.31	N/A	N/A	11.5	1.00	1.32

Table C-3 Polycyclic Aromatic Hydrocarbon Concentrations in Seawater (cont'd)

NOTES:

Highlighted cells indicate concentrations that exceed applicable guideline and criteria values.

¹ NOAA criteria were only included if British Columbia or CCME guidelines were not available.

'<' indicates value less than method detection limit

'-' indicates guidelines and criteria not available or not applicable

CCME – Canadian Council of Ministers of the Environment

NOAA – National Oceanic and Atmospheric Administration

CMC – criteria maximum concentration is the highest level for a 1-hour average exposure not to be exceeded more than once every 3 years (acute).

CCC – criteria continuous concentration is the highest level for a 4-day average exposure not to be exceeded more than once every 3 years (chronic).

CMC and CCCs are proposed criteria

MDL – method detection limit

N/A – not applicable

			1
BC	CCME	NO/	4A'
Marine	Marine	CMC	CCC
(µg/L)	(µg/L)	(µg/L)	(µg/L)
-	-	300	-
-	-	300	-

Table C-4 Other Seawater Parameters

	Parameter			
Seawater Sample	NH ₃	рН	Salinity	S
	(mg N/L)		(%)	(mg/L)
#1	0.023	7.53	28.7	0.366
#2	0.087	7.72	29.5	0.366
#8	-	7.12	29.4	0.427
#9	0.016	7.61	27.6	0.274
#10	0.015	7.77	27.7	0.32
#11	-	7.12	27.1	0.305
#12	0.117	7.26	26.9	0.442
#3	0.094	7.63	26.5	0.259
#4	0.107	7.94	26.9	0.686
#5	0.036	7.98	28.0	0.213
#6	0.017	7.83	26.2	0.168
#7	0.024	7.94	27.9	0.289
NOTE:				
'-' indicates not measured				

Table C-5Metal Concentrations in Sediment

			Sediment Sample																	Marir	ne Sedir	ment Cr	iteria/Gu	uidelines	5			
	MDI	1	2	3	3	4	5	6	7	7	7	7	7	12	9	10	BC Gene Qualit	ric Sediment y Criteria	C Sec Qu Guide Marine	CME liment Jality lines for Aquatic Life	СЕРА		NOAA ²	2	FDI	EP ³	Washin Sedime Sta	gton State ent Quality Indard
Metai					(duplicate)						(repli	cates)			(refer	ence)	SedQCscs	SedQC _{TCS}	ISQG	PEL		ERL	ERM	AET	TEL	PEL	Level ⁴	Effects Level ⁵
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) (mg/kg)	(mg/kg)
Silver	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	-	-	-	-	-	1	3.7	3.1 ^(b)	0.733	1.77	6.1	6.1
Aluminium	10	35,800	35,900	35,300	36,900	35,600	32,500	35,000	37,300	38,400	39,700	38,200	37,200	35,500	25,400	32800	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	1	2	2	5	6	3	2	4	6	4	5	4	6	2	3	3	26	50 ¹	7.24	41.6	-	-	-	-	-	-	-	-
Boron	3	42	42	55	57	57	53	58	57	54	68	57	59	53	33	46	-	-	-	-	-	-	-	-	-	-	-	-
Barium	0.05	147	146	145	145	145	130	147	152	167	170	162	154	150	121	135	-	-	-	-	-	-	-	<mark>48 ^(a)</mark>	-	-	-	-
Beryllium	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	-	-	-	-	-
Bismuth	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-	-	-	-	-	-	-	-	-	-	-	-
Calcium	10	15,000	16,100	14,800	15,000	15,100	16,200	14,800	16,000	16,900	17,500	17,000	16,700	15,600	11,100	15,200) -	-	-	-	-	-	-	-	-	-	-	-
Cadmium	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.09	<0.05	0.09	0.08	0.11	0.06	<0.05	<0.05	2.6	5	0.7	4.2	0.6	-	-	-	-	-	-	-
Cobalt	0.3	14.7	14.2	14.4	15.3	13.4	12.8	13.5	14.4	14.8	15.2	15.2	14.9	14.1	14.2	14.3	-	-	-	-	-	-	-	10 ⁽ⁿ⁾	-	-	-	-
Chromium	0.3	52.5	53.5	52.6	56.8	53.2	48.2	52.3	55.5	56.7	58.9	57.6	56.3	52.7	43.3	54.4	99	190	<mark>52.3</mark>	160	-	-	-	-	-	-	-	-
Copper	0.5	48.4	47.0	47.4	52.0	45.1	43.1	44.1	51.1	49.7	51.5	51.4	51.3	46.7	34.3	40.8	67	130	<mark>18.7</mark>	108	-	-	-	-	-	-	-	-
Iron	5	39,400	37,200	39,000	40,900	36,900	34,000	36,400	40,400	39,500	40,900	40,100	40,300	38,000	37,300	38,200) -	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.0005	5 0.0221	0.0162	0.0180	0.0127	0.0182	0.0168	0.0185	0.0137	0.0141	0.0136	0.0147	0.0114	0.0167	0.0121	0.0115	0.43	0.84	0.13	0.7	0.75	-	-	-	-	-	-	-
Potassium	3	9,940	10,100	9,830	10,200	9,630	8,880	9,830	10,700	11,100	11,500	10,900	10,700	10,100	6,860	8,670	-	-	-	-	-	-	-	-	-	-	-	-
Lithium	1	54	54	52	58	50	50	48	55	53	56	55	54	50	54	52	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	10	16,600	16,200	16,500	17,400	15,900	15,100	15,840	17,300	17,200	17,800	17,400	17,400	16,300	15,500	16,400) -	-	-	-	-	-	-	-	-	-	-	-
Manganese	0.05	677	634	659	701	626	566	625	669	671	695	680	672	646	513	596	-	-	-	-	-	-	-	260 ⁽ⁿ⁾	-	-	-	-
Molybdenum	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2	0.7	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-
Sodium	10	16,100	16,000	16,900	16,100	15,300	15,800	15,600	18,000	17,800	18,400	18,300	18,300	16,500	11,500	12,800) -	-	-	-	-	-	-	-	-	-	-	-
Nickel	0.3	23	24	24	24	23	21.8	22.2	23.7	23.7	24.4	24.0	23.6	22.6	18.0	24.6	-	-	-	-	-	20.9	51.6	110 ^(e,l)	15.9	42.8	-	-
Phosphorus	2	1,060	799	992	1,350	762	718	1,040	1,370	1,000	1,300	1,160	1,280	686	1,390	1,190	-	-	-	-	-	-	-	-	-	-	-	-
Lead	1	5	4	4	4	4	5	4	5	5	5	4	5	4	2	3	69	130	30.2	112	-	-	-	-	-	-	-	-
Sulphur	10	2,090	2,230	2,100	2,060	1,900	3,787	2,136	3,300	3,120	3,310	3,170	3,630	2,730	1,707	1,919	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	-	-	-	-	-	-	9.3 ^(e)	-	-	-	-
Selenium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	-	-	-	-	-	-	1 ^(a)	-	-	-	-
Silicon	3	321	203	252	324	145	202	632	368	314	369	301	310	189	304	253	-	-	-	-	-	-	-	-	-	-	-	-
Tin	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-	-	-	-	-	-	-	< 3.4 ⁽ⁿ⁾	-	-	-	-
Strontium	0.5	140	142	138	141	142	135	135	150	154	157	153	149	144	92	125	-	-	-	-	-	-	-	-	-	-	-	-

Table C-5 Metal Concentrations in Sediment (cont'd)

								Sedime	ent Samp	le										Marin	e Sedin	nent Cri	teria/Gu	idelines				
Motol	MDL	1	2	3	3	4	5	6	7	7	7	7	7	12	9	10	BC Gener Quality	ic Sediment / Criteria	CC Sedi Qu Guidel Marine L	ME ment ality ines for Aquatic ife	СЕРА		NOAA ²		FDI	ΞΡ ³	Washing Sedime Stai	gton State nt Quality ndard
metai					(duplicate)						(replic	ates)			(refer	ence)	SedQC _{scs}	SedQC _{TCS}	ISQG	PEL		ERL	ERM	AET	TEL	PEL	Level ⁴	Effects Level⁵
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Titanium	0.5	484	1,490	1,630	2,110	682	627	1,750	2,240	1,770	2,230	1,960	2,210	1,060	1,480	1,830	-	-	-	-	-	-	-	-	-	-	-	-
Thallium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	0.5	86	135	136	142	107	94.4	130	144	144	149	145	144	136	117	134	-	-	-	-	-	-	-	57 ⁽ⁿ⁾	-	-	-	-
Zinc	0.3	84.2	79.1	81.1	85.9	75.9	73.6	76.2	84.9	84.6	87.5	86.3	87.3	79.9	80.2	79.1	170	330	124	271	-	-	-	-	-	-	-	-

NOTES:

Highlighted indicates value exceeds applicable regulatory guideline and criteria

AET values represent the concentration above which adverse biological effects would always be expected by that biological indicator. Adverse effects are known to occur below the AET. AET values were developed for use in Puget Sound, Washington. ¹ Less reliable value that could not be fully evaluated

² National Oceanic and Atmospheric Administration

³ Florida Department of Environmental Protection

⁴ sediment quality goal

⁵ upper regulatory level for source control and clean-up decision making

⁶ AET = Apparent effects threshold (entry is the lowest value among AET values for: a - amphipod; b - bivalve; e - echinoderm larvae; I - larval max; n - Neanthes (polychaete) bioassay

'-' indicates guideline and criteria not available or not applicable

CEPA – Canadian Environmental Protection Agency (Screening Limits for Ocean Disposal)

MDL - method detection limit

SedQC_{SCS} – sediment quality criteria for sensitive contaminated sites

SedQC_{TCS} – sediment quality criteria for typical contaminated sites

			Sediment Sample													
Non-Halogenated Volatiles MDL 1 2 (mg/kg) (mg/kg) (mg, (mg, 2 Benzene 0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080 <0.080	2	3	9	10	NOAA											
Non-Halogenated volatiles			ļ							(refe	rence)	AET				
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)				
Benzene	0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.080	<0.040	<0.040	-				
Ethylbenzene	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	<0.050	0.004 ^{e,l}				
Styrene	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	<0.050	-				
Toluene	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	<0.050	-				
meta- and para-Xylene	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	<0.050	-				
ortho-Xylene	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	<0.050	-				
Total Xylenes	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.10	<0.10	0.004 ^{b,l}				
NOTES:																

'-' indicates no guideline and criteria available

e – echinoderm larvae; I – larval (max); b – bivalve

MDL – method detection limit

NOAA – National Oceanic and Atmospheric Administration

AET – apparent effects threshold

NOAA criteria were used, as no Canadian guidelines and criteria were available.

						Sedime	nt Sample						Marine Sediment		Guidelines
Diauin/Euron	1	2	3	4	4	5	6	7	8	11	12	Lab Blank	CCN	IE	NOAA
Dioxili/Furali					(duplicate)								ISQG	PEL	AET
	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)			pg/g
2,3,7,8-TCDD	0.15	0.17	0.15	0.14	NDR 0.11	0.21	NDR 0.13	0.17	0.2	NDR 0.12	NDR 0.17	NDR 0.03	-	-	3.6
1,2,3,7,8-PeCDD	1.32	1.7	1.28	1.03	0.95	1.63	0.95	1.4	1.73	1.14	1.25	0.06	-	-	-
1,2,3,4,7,8-HxCDD	< 0.08	< 0.16	0.2	< 0.12	< 0.15	< 0.12	0.13	0.19	0.23	0.17	0.19	0.07	-	-	-
1,2,3,6,7,8-HxCDD	11.5	14.6	12.3	9.27	9.14	13.1	8.05	12.7	15	10.7	11.8	NDR 0.05	-	-	-
1,2,3,7,8,9-HxCDD	5.25	6.46	5.44	4.37	4.33	5.98	3.82	5.42	6.7	4.76	5.28	NDR 0.10	-	-	-
1,2,3,4,6,7,8-HpCDD	14.8	15.4	14.2	12	12.5	14.2	10.1	16.5	18.1	13.3	12.9	NDR 0.19	-	-	-
OCDD	63.3	51.8	53.8	48.9	51.6	43	37.2	82.4	60.7	49.7	45.5	0.51	-	-	-
2,3,7,8-TCDF	0.38	0.35	0.32	0.32	0.3	0.37	0.25	0.32	0.3	0.29	0.3	0.03	-	-	-
1,2,3,7,8-PeCDF	0.09	0.08	0.08	NDR 0.06	0.1	NDR 0.12	NDR 0.06	NDR 0.08	NDR 0.08	0.07	NDR 0.08	0.05	-	-	-
2,3,4,7,8-PeCDF	0.14	0.13	NDR 0.18	NDR 0.13	0.09	0.15	0.12	0.15	NDR 0.11	0.12	NDR 0.11	0.07	-	-	-
1,2,3,4,7,8-HxCDF	0.18	0.13	NDR 0.15	0.19	NDR 0.06	NDR 0.15	NDR 0.12	NDR 0.17	NDR 0.11	0.1	NDR 0.13	NDR 0.05	-	-	-
1,2,3,6,7,8-HxCDF	0.14	NDR 0.08	0.09	0.11	0.11	NDR 0.09	0.09	NDR 0.10	0.1	NDR 0.09	NDR 0.08	0.06	-	-	-
1,2,3,7,8,9-HxCDF	0.04	< 0.03	< 0.03	< 0.03	< 0.02	< 0.03	NDR 0.02	NDR 0.02	< 0.02	< 0.02	< 0.02	NDR 0.08	-	-	-
2,3,4,6,7,8-HxCDF	0.1	NDR 0.11	0.12	0.08	0.1	0.1	NDR 0.08	0.09	0.1	NDR 0.09	NDR 0.11	NDR 0.06	-	-	-
1,2,3,4,6,7,8-HpCDF	1.54	1.35	1.35	1.37	1.41	1.37	0.98	1.33	1.32	1.18	1.22	0.1	-	-	-
1,2,3,4,7,8,9-HpCDF	0.14	0.15	0.14	NDR 0.11	0.11	0.1	NDR 0.09	NDR 0.08	NDR 0.10	0.08	NDR 0.09	NDR 0.05	-	-	-
OCDF	3.87	2.43	2.76	2.92	3.13	2.57	1.81	2.77	2.8	2.5	2.49	NDR 0.16	-	-	-
Total Tetra-Dioxins	2.06	2.19	1.78	1.33	1.17	2.28	0.53	1.69	2.18	1.11	1.91	< 0.02	-	-	-
Total Penta-Dioxins	9.52	13.2	10.6	8.46	8.29	13.3	8.23	12	14.3	8.88	10.6	0.06	-	-	-
Total Hexa-Dioxins	82.9	103	87.7	68.7	67	95.3	58.7	87.1	111	75.8	85.6	0.07	-	-	-
Total Hepta-Dioxins	38.3	35.1	34.5	30	30.6	33.6	23.3	47.6	45.6	33.2	29.5	0.11	-	-	-
Total Tetra-Furans	2.72	2.98	2.82	2.52	2.3	2.58	1.87	2.56	2.29	2.4	2.82	0.03	-	-	-
Total Penta-Furans	1.79	1.71	1.61	1.36	1.11	1.58	1.27	1.28	0.72	1.21	1.3	0.18	-	-	-
1,2,3,7,8,9-HxCDF	2.05	1.7	1.79	2.01	1.62	1.08	1.44	1.51	1.92	1.75	0.54	0.06	-	-	-
Total Hepta-Furans	4.59	3.69	3.59	3.68	3.89	3.62	2.64	3.8	3.59	3.35	3.13	0.1	-	-	-
% Moisture	52.6	53.4	53.8	49.7	52.5	50.9	51.6	55	52.9	53.5	55.1		-	-	-

Table C-7 Dioxin and Furan Concentrations in Sediment

Table C-7Dioxin and Furan Concentrations in Sediment (cont'd)

Dioxin/Furan	Sediment Sample														
	1 2		3	4	4	5	6	7	8	11	12				
					(duplicate)										
	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)	(pg/g)				
2,3,7,8-TCDF (C) ¹	NDR 0.17	0.15	0.2	0.14	0.11	0.12	NDR 0.10	NDR 0.11	0.11	NDR 0.13	0.14				
TEQ (ND=1/2 MDL) ²	1.84	2.26	1.78	1.42	1.24	2.20	1.24	1.98	2.34	1.50	1.56				

NOTES:

AET values represent the concentration above which adverse biological effects would always be expected by that biological indicator. Adverse effects are known to occur below the AET. Al Washington.

Highlighted indicates value exceeds applicable regulatory guideline and criteria.

'-' indicates no guideline and criteria available

'<' indicates less than the detection limit</p>

AET = Apparent effects threshold (entry is the lowest value among AET values for: a - amphipod; b - bivalve; o - oyster larvae; e - echinoderm larvae; i - infaunal community effects; I - larval bioassay

ID = insufficient data

MDL = method detection limit

NDR = peak detected but did not meet quantification criteria; value not included in TEQ calculations

NOAA = National Oceanic and Atmospheric Administration

PEL = probably effects level

¹ Duplicate 2,3,7,8-TCDF value not included in TEQ calculation (analysis conducted in a different column from rest of samples for confirmatory purposes).

² TEQ calculated using TEFs for fish (CCME, 2004); 1/2 MDL value used for non-detects in TEQ calculations

		Marine S	Guidelines				
	Lab Blank	CCN	NOAA				
		ISQG	PEL	AET			
	(pg/g)			pg/g			
	0.02	-	-	-			
	0.14	0.85	21.5				
ET al m	values were deve ax; m - Microtox	eloped for us bioassay; n -	e in Puge	t Sound, s (polychaete)			

			Sediment Sample													Marine Sediment Guidelines									
MDL	MDL	1	2	2	3	4	5	5	6	7	12	9	10	1	BC	CC	ME	CEPA		NOAA		FD	EP		
РАН				(replicate))			(replicate)					ence)	SedQC _{SCS} SedQC _{TCS}		ISQG	QG PEL		ERL	ERM	AET	TEL	PEL		
	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)		
Naphthalene	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.24	0.47	0.035	0.39	-							
2-Methylnapthalene	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.12	0.24	0.020	0.20	-							
Acenaphthylene	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.079	0.15	0.006	0.13	-							
Acenaphthene	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.055	0.11	0.007	0.0089	-							
Fluorene	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.089	0.17	0.021	0.14	-							
Phenanthrene	0.05	0.15	0.15	0.17	0.18	0.15	0.13	0.11	0.14	0.15	0.09	<0.05	<0.05	0.34	0.65	0.087	0.54	-							
Anthracene	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.15	0.29	0.047	0.25	-							
Total LMW-PAHs		0.15	0.15	0.17	0.18	0.15	0.13	0.11	0.14	0.15	0.09	NA	NA	-	-	-	-	-	0.552	3.2	1.2 ^e	0.312	1.442		
Fluoranthene	0.05	0.33	0.32	0.37	0.39	0.29	0.26	0.22	0.28	0.3	0.22	<0.05	0.06	0.93	1.8	0.11	1.49	-							
Pyrene	0.05	0.33	0.32	0.38	0.4	0.29	0.26	0.22	0.28	0.3	0.24	<0.05	0.06	0.87	1.7	0.15	1.4	-							
Benzo(a)anthracene	0.05	0.23	0.24	0.26	0.27	0.19	0.16	0.13	0.17	0.18	0.13	<0.05	<0.05	0.43	0.83	0.075	0.69	-							
Chrysene	0.05	<0.05	0.28	0.3	0.32	0.23	0.2	0.16	0.21	0.22	0.16	<0.05	<0.05	0.52	1	0.108	0.85	-							
Benzo(b)fluoranthene	0.05	0.61	0.6	0.7	0.7	0.54	0.42	0.36	0.43	0.46	0.49	0.06	0.09	-	-	-	-	-	-	-	1.8 ^{e,i}	-	-		
Benzo(k)fluoranthene	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-	-	-	-	-	-	-	1.8 ^{e,i}	-	-		
Benzo(a)pyrene	0.05	0.32	0.32	0.39	0.36	0.27	0.22	0.19	0.24	0.24	0.17	<0.05	<0.05	0.47	0.92	0.089	0.76	-							
Indeno(1,2,3-cd)pyrene	0.05	0.24	0.23	0.27	0.25	0.22	0.16	0.14	0.17	0.17	0.11	<0.05	<0.05	-	-	-	-	-	-	-	0.6 ^m	-	-		
Dibenz(a,h)anthracene	0.05	0.05	0.05	0.06	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.084	0.16	0.0062	0.14	-							
Benzo(g,h,i)perylene	0.05	0.23	0.22	0.25	0.23	0.24	0.16	0.15	0.18	0.17	0.12	<0.05	<0.05	-	-	-	-	-	-	-	0.67 ^m	-	-		

Table C-8 Polycyclic Aromatic Hydrocarbon Concentrations in Sediment

		Sediment Sample								Marine							
MD	MDL	1	2	2	3	4	5	5	6	7	12	9	10	E	BC	CC	ME
РАН				(replicate)				(replicate)				(refere	ence)		SedQC _{TCS}	ISQG	PEL
	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)
Total HMW-PAHs		2.3	2.6	3.0	3.0	2.3	1.8	1.6	2.0	2.0	1.6	0.06	0.21	-	-	-	-
Total PAHs		2.5	2.7	3.2	3.2	2.4	2.0	1.7	2.1	2.2	1.7	0.06	0.21	-	-	-	-

Table C-8 Polycyclic Aromatic Hydrocarbon Concentrations in Sediment (cont'd)

NOTES:

AET values represent the concentration above which adverse biological effects would always be expected by that biological indicator. Adverse effects are known to occur below the AET. Al Washington.

Highlighted cells indicate value is above applicable guideline and criteria.

NOAA and FDEP guidelines and criteria were only included if Canadian guidelines were not available.

'-' indicates guideline and criteria not available or not applicable

AET – Apparent effects threshold (entry is the lowest value among AET values for: e - echinoderm larvae; i - infaunal community effects; m - Microtox bioassay.

CCME – Canadian Council of Ministers of the Environment

CEPA – Canadian Environmental Protection Agency; Screening Limits for Ocean Disposal

ERL – effects range low

ERM = effects range median

FDEP – Florida Department of Environmental Protection (source document is Macdonald 1994)

ISQG – Interim sediment quality guideline

MDL – method detection limit

NA – not applicable

NOAA – National Oceanic and Atmospheric Administration

PAH – polycyclic aromatic hydrocarbon

PEL – Probable effects level

SedQC_{scs} – sediment quality criteria for sensitive contaminated sites

SedQC_{TCS} – sediment quality criteria for typical contaminated sites

TEL = threshold effects level

Sediment Guidelines										
CEPA		NOAA		FD	EP					
	ERL	ERM	AET	TEL	PEL					
(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)					
-	1.7	9.6	7.9 ^e	0.655	6.676					
2.5										
ET values	s were de	eveloped f	or use in F	Puget Sou	nd,					

				Marine Sed	iment Guid	elines	
Sediment	MDL	Total PCBs (as Aroclor 1254)	BC Generic Quality	c Sediment Criteria ¹	CCN	1E ²	CEPA
Sample		(,	SedQC _{SCS}	$\text{SedQC}_{\text{TCS}}$	ISQG	PEL	
	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)
1	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
2	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
3	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
3 (replicate)	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
4	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
5	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
6	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
7	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
8	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1
11	0.03	0.03	0.12	0.23	0.0633	0.709	0.1
11 (replicate)	0.03	0.03	0.12	0.23	0.0633	0.709	0.1
12	0.03	<0.03	0.12	0.23	0.0633	0.709	0.1

Table C-9 Polychlorinated Biphenyl Concentrations in Sediment

NOTES:

Samples were quantified against an Aroclor 1254 standard because the PCB pattern was closest to this particular Aroclor.

¹ The sum of four to seven Aroclor mixtures, not including Aroclor 1254

² Aroclor 1254

CCME - Canadian Council of Ministers of the Environment

CEPA – Canadian Environmental Protection Agency (Screening Limits for Ocean Disposal)

ISQG - interim sediment quality guideline

MDL – method detection limit

PCB – polychlorinated biphenyl

PEL - probable effects level

SedQCSCS – sediment quality criteria for sensitive contaminated sites

SedQCTCS - sediment quality criteria for typical contaminated sites

Table C-10 Other Sediment Parameters

Sediment Sample	Moisture	Total Organic Carbon
	(%)	(% dry wt.)
1	54.3	1.28
3	55	1.29
4	56.7	0.99
5	53.4	1.08
5 (rep)	55.1	1.82
6	53.2	1.17
7	58.6	0.75
9	57.1	1.63
10	49.9	0.78
12	54.4	1.25

C.2 Vizon Scitec Report

C.3 Particle Size Distribution Results – Vizon Scitec

VIZON SCITEC

TOXICITY AND CHEMICAL TESTING ON MARINE SEAWATER AND SEDIMENT SAMPLES FOR THE GATEWAY ENVIRONMENTAL MANAGEMENT (GEM) MARINE PROJECT SAMPLING PERIOD: FEBRUARY 2006

Prepared for:

Jacques Whitford Ltd. 4370 Dominion Street, 5th Floor Burnaby, BC Canada V5G 4L7

Prepared by: Toxicology Group

Project No.: 2-11-0965B Jacques Whitford April 2006 Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2

Tel: (604) 224-4331

Fax: (604) 224-0540

Email: info@vizonscitec.com

Web: www.vizonscitec.com

SUMMARY

Seawater and marine sediment samples were collected by Jacques Whitford staff and shipped to Vizon for arrival on 9 February 2006. Seawater samples were analysed for dissolved metals, PAHs, BTEX, ammonia, pH, salinity, and sulphide. The sediment samples tested using the 10-d marine amphipod survival (*Eohaustorius estuarius*) test and 20-d polychaete survival and growth (*Neanthes arenaceodentata*) test. In addition, the sediment was also characterised for total metals, PAHs, BTEX, moisture content, total organic carbon, particle size distribution, total PCBs, dioxins and furans, and AVS/SEM; and porewater ammonia, pH, and sulphide.

The analytical reports for the seawater and sediment characterisation are located in the appropriate sections of this report. Table 1 summarises the results of the toxicity tests as per the guidance provided in the appropriate test methods. The values are mean \pm SD unless otherwise indicated.

-1\\/	Vizon	Marine Amphipod			Po	lychaete	
Sample Name	Sample Name	Survival (%)	Notes ^a	Survival (%)	Mean Dry Weight (mg/worm)	Mean Growth Rate (mg/worm/day)	Notes
Site 9	JW9	97 ± 4	N/A	100 ± 0	20.64 ± 1.40	1.00 ± 0.07	NSD°
Site 10	JW10	90 ± 8	N/A	100 ± 0	20.25 ± 3.10	0.98 ± 0.15	NSD°
Site 1	JW1	88 ± 8	Passed	100 ± 0	20.61 ± 1.32	1.00 ± 0.07	NSD ^d
Site 2	JW2	88 ± 8	Passed	100 ± 0	21.45 ± 1.85	1.04 ± 0.09	NSD [₫]
Site 3	JWЗ	80 ± 12	Passed ^b	100 ± 0	20.54 ± 1.66	0.99 ± 0.08	NSD [₫]
Site 4	JW4	87 ± 4	Passed	100 ± 0	19.71 ± 4.20	0.95 ± 0.21	NSD ^d
Site 5	JW5	85 ± 12	Passed ^b	100 ± 0	20.15 ± 2.64	0.97 ± 0.13	NSD ^d
Site 6	JW6	82 ± 6	Passed ^b	100 ± 0	20.52 ± 2.65	0.99 ± 0.13	NSD ^d
Site 7	JW7	84 ± 8	Passed ^b	100 ± 0	19.98 ± 2.07	0.97 ± 0.10	NSD ^d
Site 12	JW12	81 ± 11	Passed ^b	100 ± 0	21.02 ± 2.17	1.02 ± 0.11	NSD ^d

Table 1 Summary of Survival and Growth Results for Marine Amphipod and Polychaete Tests

^a As per EPS 1/RM/35, the test sediment is judged to have failed this sediment toxicity test if the mean 10-d survival rate is more than 20% lower than that in the reference sediment and is significantly different. The reference sediments were identified by the client to be Site 9 (JW9) and Site 10 (JW10).

^b Amphipod survival in test sediments JW3, JW5, JW6, JW7, and JW12 were significantly different from reference sediment JW9. Maximum difference = 17%.

^o NSD = Not significantly different from laboratory control. PSEP states that the bioassay response measured for sediments from each reference station should be less than the mean response that can be determined as toxic in statistical comparisons with the control sediment.

^dNSD = Not significantly different from either reference sediment (Site 9 or Site 10).

Toxicity and Chemical Testing on Marine Seawater and Sediment Samples for the Gateway Environmental Management (GEM) Marine Project Sampling Period: February 2006

SAMPLE INFORMATION

This section of the report contains the Toxicity Test Request Sheet(s) for the test samples, and any applicable sample information. For the sediment samples, sample identification was confirmed by the recorded information on water-proof labels located in the samples. All samples arrived on 9 February 2006. From receipt to test initiation, samples were stored in a cold room that was at $4 \pm 2^{\circ}$ C.

The seawater samples were collected in separate bottles appropriate to the requested analyses: dissolved metals, PAHs, BTEX, ammonia, pH, salinity, and sulphide. As per the client's request, only seawater samples from Site 1 to 7, 9, 10, and 12 were analysed. For the dates of sample collection and associated information, see the Chain of Custody forms.

The sediment samples were stored until use in the toxicity tests: 10-d marine amphipod survival (*Echaustorius estuarius*) and 20-d polychaete survival and growth (*Neanthes arenaceodentata*). Aliquots were also collected for sediment characterisation: total metals, PAHs, BTEX, moisture content, total organic carbon, particle size distribution, total PCBs, dioxins and furans, and AVS/SEM; and porewater ammonia, pH, and sulphide. After the first opening, any headspace in the sample pails was replaced with nitrogen gas during storage. As per the client's request, only selected sediment samples were analysed for toxicity testing or particular sediment characterisation (Table 2).

JW Sample Name	Vizon Sample Name	Vizon Login Number	Date of Collection	Date of Sample Arrival	Arrival Temperature (°C)	Notesª
Site 1	JW1	060210J-01	3 Feb 2006	9 Feb 2006	12.2	T, PW, SC, D/F, PCBs
Site 2	JW2	060210J-02	3 Feb 2006	9 Feb 2006	11.8	T, PW, SC, D/F, PCBs
Site 3	JWЗ	060210J-03	3 Feb 2006	9 Feb 2006	13.6	T, PW, SC, D/F, PCBs
Site 4	JW4	060210J-04	4 Feb 2006	9 Feb 2006	13.4	T, PW, SC, D/F, PCBs
Site 5	JW5	060210J-05	4 Feb 2006	9 Feb 2006	13.6	T, PW, SC, D/F, PCBs
Site 6	JW6	060210J-06	4 Feb 2006	9 Feb 2006	12.4	T, PW, SC, D/F, PCBs
Site 7	JW7	060210J-07	4 Feb 2006	9 Feb 2006	15.2	T, PW, SC, D/F, PCBs
Site 8	JW8	060210J-08	4 Feb 2006	9 Feb 2006	15.6	D/F, PCBs
Site 9	JW9	060210J-09	7 Feb 2006	9 Feb 2006	8.8	T, PW, SC
Site 10	JW10	060210J-10	7 Feb 2006	9 Feb 2006	8.4	T, PW, SC
Site 11	JW11	060210J-11	N/A	9 Feb 2006	13.8	D/F, PCBs
Site 12	JW12	060210J-12	N/A	9 Feb 2006	13.0	T, PW, SC, D/F, PCBs

Table 2 Sample Information for Sediment Samples

^aT = toxicity testing; PW = porewater chemistry; SC = all sediment characterisation except dioxins/furans and total PCBs; D/F = Dioxins/Furans; PCBs = Total PCBs.

FOR LAB USE ONLY		DATE FOBIO106	1
CLIENT	0	60210T-01	
REPORTING AND BILLING INFORMATION			-
RESULTS TO:	INVOICE TO (IF DIFFERENT):		
NAME Janine Beckett	NAME	· · · · · · · · · · · · · · · · · · ·	-
COMPANY Jacques Whitford	COMPANY		-
ADDRESS 4370 Daminian Rd	ADDRESS		-
5th floor			-
Buinshy BC			_
CITY PROVINCE	CITY	PROVINCE	-
COUNTRY COM NO POSTAL CODE V5(9417	COUNTRY	POSTAL CODE	-
TELEPHONE 604.476- 2014 FAX 604-436- 3757	TELEPHONE	FAX	-
SAMPLE INFORMATION			
SAMPLE NAME #1 Kitimat/Douglas(hannel			
SAMPLING METHOD 11L. Van Veen grab	SPECIAL INSTRUCTIONS		- 12.2
SAMPLED BY J. Beckett / Thompson		,	
DATE Feb.3/06 TIME			_
CONTAINER TYPE AND NUMBER 81 bucket #1		· · · · · · · · · · · · · · · · · · ·	-
TOXICITY TESTS REQUIRED			
PROTOCOL	100% SCREEN CONCENTRATION (PASS/FAIL) RANGE	COMMENTS	
ACUTE DAPHNIA MAGNA 48H STATIC ACUTE			-
RAINBOW TROUT 96H STATIC ACUTE			-
MICROTOX		·····	-
CHRONIC SALMONID 70 EMBRYO VIABILITY			-
FATHEAD MINNOW 7D SURVIVAL AND GROWTH			-
CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION			
SELENASTRUM GROWTH 72H INHIBITION			-
TOPSMELT 7D SURVIVAL AND GROWTH			-
ECHINODERM FERTILIZATION TEST			-
(SEA URCHINS/SAND DOLLARS)			_
			<u>-</u>
20 d Blueboote curving			
2001 IOIYCIDELE SULVIVAL			Vizon SciTec Inc.
	PECEIVED BY		Vancouver, BC
	NAME	DATE TIME	- Canada V6S 2L2
			Canada Tel: (604) 224-43
	< Ball	Tengini ieiu	- Fax: (604) 224-05
	C. FARMARL	FEBIDIO 1242	_ USA Tel: (360) 738-09

/esbrook Mall uver, BC a V6S 2L2 а 604) 224-4331 604) 224-0540 360) 738-0958 Fax: (360) 733-3590

LQAU/Forms/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.dot

8

	PROJECT NUMBER			DATE TOP	310106
	CLIENT		060	SAMPLE NUMBER	2
REPORTING AND BILLING	INFORMATION				
RESULTS TO:	-	INVOICE TO (IF	DIFFERENT):		
NAME Janine Beck	cett	NAME			
COMPANY Jacques W	nittord	COMPANY	······································		
ADDRESS 4376 Dom	inion Rd.	ADDRESS		·····	· · · · · · · · · · · · · · · · · · ·
5th floor					
Burnaby	BL				
city (anada	PROVINCE V5G4L7	CITY	• •	PROVINCE	<u> </u>
COUNTRY 604-436-301	4 POSTAL CODE 604-436-3752	COUNTRY		POSTAL CODE	
TELEPHONE	FAX	TELEPHONE		FAX	
SAMPLE INFORMATION					
SAMPLE NAME #2 Kiti	mat/Douglas Channo	1			
SAMPLING METHOD // L Van	Veen grab	SPECIAL INSTR	UCTIONS		
SAMPLED BY J. Beckett 1	J. Thompson	-			
DATE Feb. 3/06	TIME		<u></u>		<u></u>
CONTAINER TYPE AND NUMBER	#2	1	·		
TOXICITY TESTS REQUIR				ing the second	
PROTOCOL		100% SCREEN	CONCENTRATION	COMMENTS	
ACUTE DAPHNIA MAGNA	48H STATIC ACUTE	(PASS/FAIL)	RANGE	- <u></u>	
RAINBOW TROUT	96H STATIC ACUTE				
MICROTOX					
MICROTOX					
	IBRYO VIABILITY				
CHRONIC SALMONID 7 DEN FATHEAD MINNOV	IBRYO VIABILITY 7D SURVIVAL AND GROWTH		······	· · · · · · · · · · · · · · · · · · ·	
CHRONIC SALMONID 7D EN FATHEAD MINNOW CERIODAPHNIA DI	IBRYO VIABILITY 77D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION			· · · · · · · · · · · · · · · · · · ·	
CHRONIC SALMONID 7 DEN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM GI	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION			· · · · · · · · · · · · · · · · · · ·	
CHRONIC SALMONID 7 DEN FATHEAD MINNOV CERIODAPHNIA DU SELENASTRUM GI TOPSMELT 7D SL	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH			· · · · · · · · · · · · · · · · · · ·	
CHRONIC SALMONID 7 Q EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM GI TOPSMELT 7D SL ECHINODERM FER (SEA URCHINO/SA	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH TILIZATION TEST ND DOLLARS)				
CHRONIC SALMONID 70 EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM GI TOPSMELT 7D SL ECHINODERM FER (SEA URCHINS/SA CHAMPIA PARVUI	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH TILIZATION TEST ND DOLLARS) JA REPRODUCTION				
CHRONIC SALMONID 70 EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM G TOPSMELT 7D SL ECHINODERM FER (SEA URCHINS/SA CHAMPIA PARVUI OTHER OC. 3MPh 190	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH ITILIZATION TEST ND DOLLARS) A REPRODUCTION				
CHRONIC SALMONID 70 EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM G TOPSMELT 7D SL ECHINODERM FER (SEA URCHINS/SA CHAMPIA PARVUI OTHER OC. OMPHI PA 20 d. Polyc	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH ITILIZATION TEST ND DOLLARS) A REPRODUCTION CA SULVIVA WE SULVIVA WE SULVIVA CA SULVIVA CA SULVIVA CA SULVIVA CA SULVIVA CA SULVIVA CA SULVIVA CA SULVIVA CA SULVIVA CA SULVIVAL CA SULV				
CHRONIC SALMONID 70 EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM G TOPSMELT 7D SL ECHINODERM FER (SEA URCHINS/SA CHAMPIA PARVUL OTHER OC. 2001 PAIL 20 d. Poly C	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH TILIZATION TEST ND DOLLARS) A REPRODUCTION 20 SULVIVA) WE HE SULVIVA) ORD	· · · · · ·			
CHRONIC SALMONID 70 EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM G TOPSMELT 7D SL ECHINODERM FER (SEA URCHINS/SA CHAMPIA PARVUI OTHER Od. JMPhi PA 20 d. Poly ch CHAIN OF CUSTODY REC RELINQUISHED BY: JAN IVIE	IBRYO VIABILITY 17D SURVIVAL AND GROWTH 17D SURVIVAL AND GROWTH 17D SURVIVAL AND REPRODUCTION 17D SURVIVAL AND GROWTH 17D DOLLARS) 17D DOLLARS) 17D SURVIVA 17D SURVIVA 17D SURVIVA 17D SURVIVA 17D SURVIVA 17D SURVIVA 17D SURVIVA 17D SURVIVAL AND GROWTH 17D	RECEIVED BY:			
CHRONIC SALMONID 70 EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM G TOPSMELT 7D SL ECHINODERM FER (SEA URCHINS/SA CHAMPIA PARVUE OTHER OC. 2001 PAIN 20 d. POLY CHAIN OF CUSTODY REC RELINQUISHED BY: Jan INC NAME	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH TILLZATION TEST ND DOLLARS) A REPRODUCTION 20 SULVIVA 1 WE SULVIVA 1 ORD DATE TIME	RECEIVED BY:		DATE	
CHRONIC SALMONID 70 EN FATHEAD MINNOV CERIODAPHNIA DI SELENASTRUM G TOPSMELT 7D SL ECHINODERM FEF (SEA URCHINS/SA CHAMPIA PARVUL OTHER OCL. 2000 Phi PA 20 d. Poly ch CHAIN OF CUSTODY REC RELINQUISHED BY: Jan ME NAME	IBRYO VIABILITY 7D SURVIVAL AND GROWTH JBIA 7D SURVIVAL AND REPRODUCTION ROWTH 72H INHIBITION IRVIVAL AND GROWTH ITILIZATION TEST ND DOLLARS) A REPRODUCTION CAL SULVIVAL DATE TIME	RECEIVED BY: NAME			TIME C

Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada Tel: (604) 224-4331 Fax: (604) 224-0540 USA Tel: (360) 738-0958 Fax: (360) 733-3590

L:QAU/Forms/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.dot

•					
FOR LAB USE ONLY PROJECT NUMBER			DATE	10/06	
CLIENT			SAMPLE NUMBER	IT-DR	
SERVICE TO		Dicerprint).			
NAME Conic Barlot	NAME	Dirfekent).			
COMPANY 1 1 1 1 1 1	COMPANY				
ADDRESS UNA ADDRESS UNA	ADDRESS			· · · · · · · · · · · · · · · · · · ·	
4370 Dominion Rd.					
5th floor					
Burnaby BC					
Canada Province V5G 4L7	CITY		PROVINCE		
COUNTRY 604-436-3014 POSTAL CODE 604-436-37			POSTAL CODE		
TELEPHONE FAX	TELEPHONE		FAX		
SAMPLE INFORMATION	de la				
SAMPLE NAME #3 Kitimat / Douglas Channe	el				
SAMPLING METHOD II L Van Veen Grab	SPECIAL INSTR	UCTIONS			
SAMPLED BY J. Beckett J. Thompson					
DAYE Feb 3/06 TIME					
CONTAINER TYPE AND NUMBER #3					136
TOXICITY TESTS REQUIRED					1
PROTOCOL	100% SCREEN (PASS/FAIL)	CONCENTRATION	COMMENTS		
ACUTE DAFHNIA MAGNA 48H STATIC ACUTE					
RAINBOW TROUT 96H STATIC ACUTE					
MICROTOX					
CHRONIC SALMONID 70 EMBRYO VIABILITY					
FATHEAD MINNOW 7D SURVIVAL AND GROWTH			<u> </u>		
CERIODAPHNIA OUBIA 7D SURVIVAL AND REPRODUCTION		· · · ·		<u></u>	
				·····	
ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS)					
CHAMPIA PARVULA REPRODUCTION					
OTHER 10 d amphipod susvival					
20 d. Tolychaete survival					Vizon SciTec I
CHAIN OF CUSTODY RECORD		$\frac{\partial f_{\rm eff}}{\partial t} = \frac{\partial f_{\rm eff}}{\partial t} + \frac{\partial f_{\rm eff}}{\partial t} $			3650 Wesbrool
RELINQUISHED BY: Janine Beckett	RECEIVED BY:		T		Vancouver, BC Canada V6S 21
NAME DATE TIME	NAME		DATE	TIME	Canada
	SE	5	Feb 9/06	1514	Tel: (604) 224 Fax: (604) 224
			PEBIC/06	1247	USA
					Tel: (360) 738

ciTec Inc. sbrook Mall ver, BC V6S 2L2 04) 224-4331 04) 224-0540 50) 738-0958 Fax: (360) 733-3590

L:QAU/Forons/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.dot

CUENT CLEAR CLASS CLEAR CLASS REPORTING AND BILLING INFORMATION NAME John C. Bockett NAME John C. Bockett NAME John C. Bockett NAME John C. Bockett COMMAND Society Science Sc	FOR LAB USE ONLY	PROJECT NUMBER				B10106	1	
REPORTING AND BULLING INFORMATION Results To: evolution (f) conservation); Imme Darline Bockett www.e Comment Jacquess Whitford comment Comment Jacquess Whitford comment 5th Flaat anoness But naby BC "Canada Province Comment Jacquess Whitford comment Same Land Same Hay Khimet / Dacqlass Channel Same Land Same Hay Khimet / Dacqlass Channel Same Land Same Hay Khimet / Dacqlass Channel Same Land Same Land Same Hay France Channel Same Land Same Manual Hay Same Accure frage Channel Same Land Same Land Same Land Accure frage Channel Same Land Same Land Same Land Accure frage Channel Same Land Same Land Same Land Accure frage Channel Same Land Same Same Land Accure frage Channel Same Land Same Land Aco		CLIENT			GORIO	<u>7-04</u>		
REBLET NO: MADGE TO DY OFFERENCI: Immediate State Content of the ofference ofference of the ofference ofference of the ofference offeree ofference ofference offeree ofference ofference offere	REPORTING AND BILLING I	INFORMATION					I	
NAME Danine Backett NAME COMMANY Jacques Whitfold COMMANY COMMANY Jacques Whitfold COMMANY JORGES 4310 Dominion Rd. ADDRESS Status Status Status Status PROVINCE Commany Beckett Commany Commany Province Commany Province Commany Province Commany Province Commany Province Commany Province Commany Province Commany Province Commany Province Commany Province Commany Province Province Province Commany Province Province Province Province Province Commany Province Province Province Province Province Sample Emilian Commany Province Province Province Province Commany Province Province Province Province Sample Emilian Comment Proving Commany Proving Commany Pr	RESULTS TO:	<u></u>	INVOICE TO (IF	DIFFERENT):				
COMMANY Decayes Whiterid COMMANY ADDRESS 4370 Dominion Rd. ADDRESS 4370 Dominion Rd. String Lennaby BC OT Canada PROVINCE COMMANY DAL (2004) PROVINCE SAMPLE ENTROPERATION Easthornel SAMPLE ENTROPERATION THE OWNERST RECOURSED PROVINCE OWNERST RECOURSED PROVINCE OWNERST RECOURSED PROVINCE SALE ANAPTINE HELL (2007) PROVINCE CONTRACT TREST RECOURSED PROVINCE	NAME Janine Berket	Ŧ	NAME				-	
Accesses 4310 Dominion Rd. Accesses 5 th Floor Butnaby BC Or Province Council And Antion Province Council Antion Province Council And Antion FAX TeleProvince FAX Sample Kine H4 Kitimet Floor FAX TeleProvince Sample Kine H4 Kitimet Floor FAX FAX Sample Kine Kitimet Floor FAX FAX FAX	COMPANY Jacobes Whi	itterd	COMPANY		· · · · · · · · · · · · · · · · · · ·		-	
5 th Floor Burnaby BC Control Conded Province Control Conded Control Conded Province Fix SAMPLING WEITHOR Fix Control Condentation Sameting weithor Fix Fix Sameting weithor Fix <t< td=""><td>ADDRESS 4370 Domin</td><td>ion Rd</td><td>ADDRESS</td><td>· · · · · · · · ·</td><td></td><td>······································</td><td>-</td></t<>	ADDRESS 4370 Domin	ion Rd	ADDRESS	· · · · · · · · ·		······································	-	
Burnaby BC OT PROVINCE Concernsol Province PSGAL DOGE PSGAL DOGE Concernsol Province PSGAL DOGE PSGAL DOGE Concernsol Province Province Province Concernsol Province Province Province Concernsol Province Province Province Sample Sum PLED INFORMATION PSCAL INSTRUCTORS PSCAL INSTRUCTORS PSCAL INSTRUCTORS Sample Sum PLED INFORMATION PSCAL INSTRUCTORS Concernsol PSCAL INSTRUCTORS OUTE DAMMER STREE DOCERNSOL Concernsol PSCAL INSTRUCTORS PROTOCOL INSTRUCTORS PSCAL INSTRUCTORS PSCAL INSTRUCTORS CONTREMENT PRODUCTOR PSCAL INSTRUCTORS PSCAL INSTRUCTORS PSCAL INSTRUCTORS CONTREMENT PRODUCTOR INSTRUCTORS PSCAL INSTRUCTORS	5th floor						-	
CT CAN OUT PROVINCE CTV PROVINCE CONTROL CORE POSTAL CORE POSTAL CORE POSTAL CORE CONTROL UNDERNATION FAX TELEPHONE FAX SAMPLE INFORMATION SAMPLE INFORMATION SPECIAL INSTRUCTIONE FAX SAMPLE INFORMATION SAMPLE INFORMATION SPECIAL INSTRUCTIONE FAX SAMPLE INFORMATION SPECIAL INSTRUCTIONE FAX SAMPLE INFORMATION SPECIAL INSTRUCTIONE SPECIAL INSTRUCTIONE SAMPLE INFORMATION SPECIAL INSTRUCTIONE SPECIAL INSTRUCTIONE SAMPLE INFORMATION SPECIAL INSTRUCTIONE SPECIAL INSTRUCTIONE SAMPLE INFORMATION THE Decket H Decket H OCKITARY TESTS RECOURSED IMPREDICTION COMMENTS ACUTE DAPHINA MARIA 48H-STATIC ACUTE IMPREDICTION IMPREDICTION MARCINE 7G EMBRYON VABLET COMMENTS COMMENTS ISS.** ACUTE DAPHINA MARIA 48H-STATIC ACUTE ISS.** ISS.** MARCINE 7G EMBRYON VABLET MARCINE 7G EMBRYON VABLET ISS.** ISS.** CHROME SALLAND AND GROWTH 72H SHEERTON ISS.** ISS.**	Burnahu	BC					-	
COUNTRY POSTAL CODUCT 11: 1 FILEPHICNE FAX SAMPLE INFORMATION FAX OUTHORS TWORK MONTH TAIL FAX TOTAL COOL 100% SCREEN PROTOCOL 100% SCREEN MARGON TROUT SPISIATIC ACUTE FAX MARGON TO COUNT TAIL AND REPRODUCTION FAX SCHARMAR PARALLAR B	CITY Canada	PROVINCE V510 417	CITY	<u>,</u>	PROVINCE		•	
TELEPHONE PAX TELEPHONE PAX TELEPHONE PAX TELEPHONE PAX TELEPHONE PAX SAMPLE INVECTION SELEMASTRUM DROWTH 72 HINVETION COMMENTS RECEIPTION COMMENTS COMMENTS RECEIP	COUNTRY 4126-3014	POSTAL CODE	COUNTRY		POSTAL CODE		-	
SAMPLE INFORMATION SAMPLE NAME ## 1 Kitimöt/Ducg/35 Channel SAMPLED W. HETROD // L. Van, Vecn. 9/36 SPECIAL INSTRUCTIONS SAMPLED W. BECKEH / J. Thorupson Date Fcb, 4/06 Date Fcb, 4/06 THE OCONTAINER TREAD ANAMERS ## 4/1 CONCONTRAINON TOXICITY ESTS REQUIRED 100% SCREEN PROTOCOL 100% SCREEN PROTOCOL 100% SCREEN CHERONIC SALMOND 700 ENERTY VABLITY FATHERD MINROW TREUTION AND REPRODUCTON CHERONIC SALMOND 70 ENERTY VABLITY FATHERD MINROW TREUTION AND REPRODUCTON SELEVASTRUM GROWTH 221 INHERITICA SELEVASTRUM GROWTH CHERONIC SALMOND 70 ENERTY VABLITY SELEVASTRUM GROWTH CHERONIC SALMOND 70 ENERTY VALAND REPRODUCTON SELEVASTRUM GROWTH CHERONIC SALMOND 70 ENERTY VALAND REPRODUCTON SELEVASTRUM GROWTH CHARDE PERTULATION TEST SELEV	TELEPHONE	FAX	TELEPHONE		FAX	·	•	
SARPLE NAME #49 Kitimat/Ducjos Channel SARPLENS METRICO III L. Van Veen Viab SPECAL INSTRUCTIONS SARPLENS METRICO III L. Van Veen Viab SPECAL INSTRUCTIONS SARPLENS METRICO III L. Van Veen Viab SPECAL INSTRUCTIONS DATE Fcb. 4/06 TWE CONTAINER TYPE AND NUMBER #4 SOME BL. bucket #44 SOME FOXICITY TESTS REQUIRED MOX COMENTS PROTOCOL IMMX COMENT TESTS REQUIRED PROTOCOL IMMX COMENTS ACUTE DAPHINA MACINA 48H STATC ACUTE MICROTOX Immediate Transmitter CHRONEC SALMOND 70 EMBRYD VIABLITY Immediate Transmitter FATHEAD MENNON TO SURVIVAL AND REPRODUCTION ISB.FMASTRUM GROWTH CERROLDENABLEMAN FERTILIZATION TEST ISB.FMASTRUM GROWTH ECHANDERM FERTILIZATION TEST ISB.FMASTRUM GROWTH <td>SAMPLE INFORMATION</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>i .</td>	SAMPLE INFORMATION						i .	
SAMPLING METHOD ////////////////////////////////////	SAMPLE NAME #4 Kiling	of Duralis Channe	1	<u> </u>			. **	
SAMPLED BY J. Beckett J. Thoringson DATE 66, 4/06 Time CONTAINER TYPEAND NUMBER #44 TOXICITY TESTS REQUIRED PROTOCOL PROTOCOL RANGOW TROLT 96H STATIC ACUTE RANGOW TROLT 96H STATIC ACUTE RECENCE 96H STATIC ACUTE RECENCE 96H STATIC ACUTE RECENCE 97 RELEASING ACUTA AND REPROJUCTION SELEMASTRUM DROWTH 72H HINGTICN CHANNA PERFULXATION TEST (SEA UPCHNISSAND OCLARE) CHANNA PERFULXATIC PERFULXATION	SAMPLING METHOD	Varia Acab	SPECIAL INSTR	UCTIONS		<u> </u>	-	
DATE F26. 4/066 The DATE F26. 4/066 The BL DUCKET THE PROTOCOL TRUE PREVIOURED PROTOCOL 1000000000000000000000000000000000000	SAMPLED BY J. Rer bott	Thompson					-	
CONTAINER TYPE AND NUMBER #44 BL DUCKet #44 TOXICITY TESTS REQUIRED PROTOCOL ACUTE DAPHINA MAGKA 48H STATIC ACUTE RAINEOU TROUT 96H STATIC ACUTE RECENCIONA SELENASTRUM GROWTH 72 BURVINAL AND REPRODUCTION SELENASTRUM GROWTH 72 BURVINAL AND REPRODUCTION SELENASTRUM GROWTH 72 HINHBITTON TOPSMELT 70 SURVINAL AND GROWTH ECHNOCENH FERTILIZATION TEST GERA UNCHINESAND DOLLASE) CHAINE DATE TIME RECENCE BY: NAME DATE TIME NAME DATE TIME NAME DATE TIME RECENCE BY: NAME DATE TIME COMMENTS PBS/10/L 1/24/7 USA Tel: (604) 224-4331 Tel: (604) 224-434 Tel: (604) 224-434	DATE Feb 4/06	ТІМЕ					•	
CL DUCKCET TOXICITY TESTS REQUIRED PROTOCOL 1004 SCREEN COMMENTS ACUTE DAPHNA MAGNA 48H STATIC ACUTE Image: Comments RAINBOW TROUT 98H STATIC ACUTE Image: Comments Image: Comments MICROTOX Image: Comments Image: Comments Image: Comments CHRONIC SALMOND 7D EMBRYO VABLITY Image: Comments Image: Comments Image: Comments FATHEAD MINNOW 7D SURVIVAL AND GROWTH Image: Comments		[]			<u></u>			
DADGET LES PRECURSED 10% SCREEN CONCENTRATION COMMENTS ACUTE DAPHNIA MAGNA 48H STATIC ACUTE Image: Concentration in the second sec	OL DUCKET				a sa na ta			
(PASSFAIL) RANGE ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE Image: Colspan="2">Image: Colspan="2" Image: Colspan="2" I	PROTOCOL		100% SCREEN	CONCENTRATION	CONMENTS			
Instruction Instruction Image: Status and out of the status and sta			(PASS/FAIL)	RANGE	COMMENTS		-	
MICROTOX IBBN 1ATE ACUTE MICROTOX IBBN 1ATE ACUTE MICROTOX IBBN 1ATE ACUTE CHRONIC SALMOND 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH IBBN 170 SURVIVAL AND REPRODUCTION CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION IBBN 170 SURVIVAL AND REPRODUCTION SELEMASTRUM GROWTH 72 HINHIBITION IBBN 170 SURVIVAL AND GROWTH Image: Image								
MICROICX Image: Salawonic 70 Emsryo Viability CHRONIC Salawonic 70 Emsryo Viability FATHEAD MINNOW 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND REPRODUCTION CERIODAPHNIA DUBIA 70 SURVIVAL AND REPRODUCTION Image: Salawonic 70 SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION Image: Salawonic 70 SURVIVAL AND GROWTH TOPSMELT 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH Image: Salawonic 70 SURVIVAL AND GROWTH	RAINBOW I ROUT 90	H STATIC ACUTE					13.4	
CHRONIC SALMONID 7D EMBRYO VIABLITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINOGERM FEBRILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMMIA PARVULA REPRODUCTION OTHER Dd & Mrphipod SU(vival 20 d. Poly Chaet' SU(vival CHAMMIA PARVULA REPRODUCTION OTHER Dd & Mrphipod SU(vival CHAMMIA PARVULA REPRODUCTION OTHER DATE TRELINQUISHED BY: Jon in C Beckett NAME DATE TIME NAME DATE TIME MAME DATE VIZON SCITEC Inc. 3650 Wesbrook Mall Vancouver, BC Canada STB F08/06 IS/4 F1: (604) 224-0540 USA Tel: (604) 224-0540 USA Tel: (360) 738-0958	MICROTOX			-			, , , , , , , , , , , , , , , , , , , ,	
FATHEAD MINNOW 7D SURVIVAL AND GROWTH		YO VIABILITY						
CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER D d amphipod SU(VIVBI 20 d. Pbly chaett SUIVIVBI 20 d. Pbly chaett SUIVIVBI CHAIN OF CUSTODY RECORD NAME DATE TIME NAME DATE TIME TIME STB FGB:0/0/0/ /24-7 USA VEX	FATHEAD MINNOW 7	D SURVIVAL AND GROWTH						
SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/GAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER [O d amphyped Sulvive] CHAIN OF CUSTODY RECORD RELINQUISHED BY: Jane NAME DATE TIME NAME DATE TIME NAME DATE TIME NAME DATE TIME NAME FG8/0/0% ISB FG8/0/0% ISA FG8/0/0% VISON SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada STB FG8/0/0% ISON // 124/7 USA Tel: (604) 224-4331 Fax: (604) 224-0540 USA Tel: (360) 738-0958	CERIODAPHNIA DUB	A 7D SURVIVAL AND REPRODUCTION						
TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER [O d amphipod SU(VIVa] 20 d. Poly chaett SUIVIVal CHAIN OF CUSTODY RECORD RELINQUISHED BY: Jonine Beckett NAME DATE TIME NAME DATE TIME NAME DATE VIZON SCITEC Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada SB FG8/0/06 1514 FG8/0/06 1514 FG8/0/06 1514 FG8/0/06 1514 FG8/0/06 1514 FG8/0/07 124/7 USA Tel: (604) 224-0340 USA Tel: (604) 738-0958	SELENASTRUM GROV	WTH 72H INHIBITION	<u></u>			······		
ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) OTHER ID d amphipool SU(VIVBI 20 d. Poly Chaet: SU(VIVBI 20 d. P	TOPSMELT 7D SURV	WAL AND GROWTH		·····				
CHAMPIA PARVULA REPRODUCTION OTHER IO d amphipod suivival Vizon SciTec Inc. 20 d. Poly chaet: Suivival Vizon SciTec Inc. CHAIN OF CUSTODY RECORD RECEIVED BY: NAME DATE TIME NAME DATE OTHER NAME DATE TIME NAME DATE DATE TIME DATE <td cols<="" td=""><td>ECHINODERM FERTIL</td><td>IZATION TEST</td><td></td><td></td><td></td><td></td><td></td></td>	<td>ECHINODERM FERTIL</td> <td>IZATION TEST</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ECHINODERM FERTIL	IZATION TEST					
OTHER IO d amphipod survival Vizon SciTec Inc. 20 d. Poly chaet: Survival Vizon SciTec Inc. 3650 Wesbrook Mall CHAIN OF CUSTODY RECORD RECEIVED BY: NAME DATE TIME DATE TIME DATE TIME NAME DATE TIME DATE Canada V6S 2L2 Canada SB F689/06 IS/4 Fax: (604) 224-4331 Fax: Goody 224-0540 USA USA LOON/FERENCE	CHAMPIA PARVULA F	REPRODUCTION				••••		
20 d. Poly chaet: Suivival Vizon SciTec Inc. CHAIN OF CUSTODY RECORD RECINQUISHED BY: Janihe Beckett NAME DATE DATE TIME DAT	OTHER 10d amphipod	survival						
CHAIN OF CUSTODY RECORD RECEIVED BY: RECEIVED BY: NAME DATE TIME NAME DATE TIME	20 d. Polycha	et survival	ŗ				Vigon Foitne Inc	
RELINQUISHED BY: Janine Received BY: Vancouver, BC NAME DATE TIME DATE TIME NAME DATE TIME DATE Canada Vancouver, BC Canada Canada Canada Vancouver, BC Canada Canada Canada Vancouver, BC Canada Canada Tel: (604) 224-4331 FGB/0/GL FGB/0/GL /24-7 Fax: (604) 224-0540 USA Tel: (360) 738-0958 Tel: (360) 738-0958	CHAIN OF CUSTODY RECOR	RD					3650 Wesbrook Mall	
NAME DATE TIME NAME DATE TIME Canada	RELINQUISHED BY: JONINE F	Beckett	RECEIVED BY:		** ***		Vancouver, BC	
SB F639/06 ISI4 Tel: (604) 224-4331 F68/0/06 ISI4 Fax: (604) 224-0540 VOAU/Forms/Requisition-Chain of Custody Forms/Current/Templates/Law/full Fax: (604) 224-0540 USA Tel: (360) 738-0958	NAME	DATE TIME	NAME	· · ·	DATE	TIME	Canada VOJ 2LZ	
FCB/0/CL /24-7 Fax: (604) 224-0540 USA Tel: (360) 738-0958 LOAU/Forms/Requisition-Chain of Custody Forms/Current/Templates/Lowidity Tests Request Form of det Fax: (602) 720-0500			SF	3	F039/06	1514	Tel: (604) 224-4331	
Tel: (360) 738-0958					FCB/0/a	1247	rax: (004) 224-0540 USA	
	L:QAU/Forms/Requisition- Chain of Custody Form	ns/Current/Tomplates/Tovicity Tasts Rouses Sou	m vå det				Tel: (360) 738-0958	

				10-	7
			- Fee	BIO106	
			<u>OGOZ</u>	at-as	, ,
REPORTING AND BILLING INFORMATION					
RESULTS TO:	INVOICE TO (IF	DIFFERENT):	$\underline{g_{1}, g_{2}, g_{2}} \in X_{1}$		
NAME Taking Bellatt	NAME				-
COMPANY TO THE LOCAL I	COMPANY				
ADDRESS (177)	ADDRESS				-
- 7570 Uominion Rd					_
Sth floor					
					-
CITY BURNADY PROVINCE BC	CITY		PROVINCE		-
COUNTRY CANADA POSTAL CODE V564447	COUNTRY		POSTAL CODE	····	-
TELEPHONE - 221 FAX Lott 431 375	TELEPHONE		FAX		 .
SAMPLEINFORMATION			ي. بر با ^{بر} در را د در		
SAMPLE NAME #F // / / / /		2000 C			
SAMPLING METHOD Kitimat/Douglas	Chann	<u> </u>			- 0
1/L Van Veen	SPECIAL INSTR	UCTIONS			S.
SAMPLED BY J. Beckett / J. Thompson					- \
DATE FEBH 06 TIME			····		
CONTAINER TYPE AND NUMBER				<u> </u>	-
OL Brokens " U					-
PROTOCOL					
	(PASS/FAIL)	CONCENTRATION RANGE	COMMENTS		
ACUTE DAPHNIA MAGNA 48H STATIC ACUTE					-
RAINBOW TROUT 96H STATIC ACUTE			<u> </u>		-
MICROTOX					-
CHRONIC SALMONIO 7D EMBRYO VIABILITY					_
FATHEAD MINNOW 7D SURVIVAL AND GROWTH					-
					_
SELENASTRUM GROWTH 72H INHIBITION					~
TOPSMELT 7D SURVIVAL AND GROWTH		<u> </u>			-
		·····		_,,	-
CHAMPIA PARVULA REPRODUCTION	<u> </u>	<u> </u>			-
OTHER 10 d Ama NAN DAd	<u> </u>				
nod Deluchade and					
CHANNEL CUSTONY PROPERTY JURNICA					Vizon SciTec Inc.
					3650 Wesbrook Mall Vancouver BC
NAME DATE TIME	NAME		DATE	TIME	- Canada V6S 2L2
·····	<u> </u>				Canada
	<u> 8B</u>		FCB 9/06	1514	Tel: (604) 224-4331 Fax: (604) 224-0540
	<u> </u>		FOB/006	1247	USA
I I	1				Tat (2(0) 700 0050

a 504) 224-4331 504) 224-0540 360) 738-0958 Fax: (360) 733-3590

LQAU/Forms/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.dot

5

X

FOR LAB USE ONLY	PROJECT NUMB	R				RIGING
an a	CLIENT					01-06
REPORTING AND BILLING I	NFORMATION	1				
RESULTS TO:		and the second sec	INVOICE TO (I	DIFFERENT):		<u>k</u> ing the second secon
NAME Janine Becke	Ht		NAME			
COMPANY JECQUES W	hitford	·	COMPANY			
ADDRESS 4370 Domi	nion Rd		ADDRESS			····· ·
5th floor						
Burnaby	B	56				
Canada		56 4L7	CITY		PROVINCE	
COUNTRY 604-436-3014	POSTAL CODE	4-436-375			POSTAL CODE	
TELEPHONE	FAX		TELEPHONE		FAX	
SAMPLE INFORMATION						
SAMPLE NAME #6 Kitir	nat/Dax	alas Char	IND			•* ••
SAMPLING METHOD	Veen (ncah	SPECIAL INSTR	UCTIONS		
SAMPLED BY J Beckett /	J. Thomp	SOM	-			
DATE Feb. 4/06	TIME 10:3	0				
	1 # 2	<u> </u>			**	<u> </u>
			- in the second s			
PROTOCOL.			100% SCREEN		COMMENTS	
ACUTE DAPHNIA MAGNA 48H	STATIC ACUTE	<u> </u>				<u> </u>
RAINBOW TROUT 96	STATIC ACUTE	······································				<u>.</u>
MICROTOX		··		·		
CHRONIC SALMONID 70 EMBR	YO VIABILITY					
FATHEAD MINNOW 7	SURVIVAL AND G	ROWTH				
CERIODAPHNIA DUBIA	7D SURVIVAL AND	REPRODUCTION			•	<u> </u>
SELENASTRUM GROV	VTH 72H INHIBITIO	N				
TOPSMELT 7D SURV	VAL AND GROWTH					
ECHINODERM FERTIL	ZATION TEST					
(SEA URCHINS/SAND CHAMPIA PARVULA F	DOLLARS) REPRODUCTION					
OTHER 10d amphing	demina					
ZOD Polych	ele snr	vival				
CHAIN OF CUSTODY RECOR				an a		
RELINQUISHED BY: ANINC.	Rechatt		RECEIVED BY:			
NAME	DATE	ТІМЕ	NAME	<u></u>	DATE	TIME
			Ste	5	COR3/06	1514
				~	, , , , , , , , , , , , , , , , , , , ,	

Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada Tel: (604) 224-4331 Fax: (604) 224-0540 USA Tel: (360) 738-0958 Fax: (360) 733-3590

LQAU/Forms/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.dot

FOR LAB USE ONLY	PROJECT NUMBER			DATE .	310/06	
	CLIENT			OGOZIO	1-07	`
REPORTING AND BILLING	INFORMATION					
RESULTS TO:		INVOICE TO (IF	DIFFERENT):			
NAME JANIAR &	Beckett	NAME			<u> </u>	
COMPANY JACOMPS	1. Mitford	COMPANY			······································	
ADDRESS 4370	Aninian Rd	ADDRESS	· · · · · · · · · · · · · · · · · · ·	<u></u>	<u>`</u>	
Stla Ploor		4				
Buchahu	BC			, <u>, , , , , , , , , , , , , , , , , , </u>		
CITY Canada	PROVINCE VEA U		· · · · · · · · · · · · · · · · · · ·	PROVINCE		
COUNTRY (NI 1126 2)	POSTAL CODE	COUNTRY		POSTAL CODE		
	FAX 604 456	TELEPHONE		FAX		
SAMPLE INFORMATION		al a star an				
SARFLE MARKE \$\$ 7 Ki	timat/Douglas C	hannel				
SAMPLING METHOD	an Veen grab	SPECIAL INSTR	UCTIONS			1
SAMPLED BY J. Beck	ett/J. Thomas	on	· · · · · · · · · · · · · · · · · · ·			15."
DATE Feb \$ 406	TIME					
CONTAINER TYPE AND NUMBER	cret #127					
TOXICITY TESTS REQUIRE	ED					
PROTOCOL		100% SCREEN	CONCENTRATION	COUNTR		
· · · · · · · · · · · · · · · · · · ·		(PASS/FAIL)	RANGE	COMMENTS		
ACUTE DAPHNIA MAGNA 4	8H STATIC ACUTE	(PASS/FAIL)	RANGE			
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S	18H STATIC ACUTE 16H STATIC ACUTE	(Pass/fail)	RANGE			
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX	18H STATIC ACUTE 16H STATIC ACUTE	(Pass/fail)				
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI	18H STATIC ACUTE 16H STATIC ACUTE BRYO VIABILITY	(Pass/fail)	RANGE			
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW	18H STATIC ACUTE 196H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH	(Pass/Fail)			·····	
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU	18H STATIC ACUTE 16H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND REPRODUC				·····	
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR	18H STATIC ACUTE 18H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND REPRODUC 10WTH 72H INHIBITION					
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI	18H STATIC ACUTE 16H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND REPRODUC 16WTH 72H INHIBITION RVIVAL AND GROWTH					
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI	18H STATIC ACUTE 36H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND REPRODUC 19WTH 72H INHIBITION RVIVAL AND GROWTH 19UZATION TEST					
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERI (SEA URCHINS/SAM CUNCOL RADIUM	18H STATIC ACUTE 18H STATIC ACUTE 18RYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND REPRODUC 10WTH 72H INHIBITION RVIVAL AND GROWTH 11LIZATION TEST 10 DOLLARS)	(Pass/fail)				
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERT (SEA URCHINS/SAN CHAMPIA PARVUL OTHER 4 2 1	18H STATIC ACUTE 36H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND REPRODUC 10WTH 72H INHIBITION RVIVAL AND GROWTH 11LIZATION TEST 10 DOLLARS) A REPRODUCTION					
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERT (SEA URCHINS/SAN CHAMPIA PARVUL OTHER 10 d. CAMPI	18H STATIC ACUTE 18H STATIC A	(Pass/Fail)				
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERT (SEA URCHINS/SAN CHAMPIA PARVUL OTHER 10d. ampl 20 d. Poly (18H STATIC ACUTE 36H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND GROWTH					ízon Sci
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERT (SEA URCHINS/SAN CHAMPIA PARVUL OTHER 10d. CAMPI 20 d. POIYO CHAIN OF CUSTODY RECO	18H STATIC ACUTE 18H STATIC ACUTE 18H STATIC ACUTE 19H STATIC A	(Pass/Fail)	RANGE			íizon Sci 650 Wes
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EM FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERT (SEA URCHINS/SAN CHAMPIA PARVUL OTHER 10d. CAMPI 20 d. POIYC CHAIN OF CUSTODY RECO RELINQUISHED BY: JANIN	18H STATIC ACUTE 36H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND GROWTH		RANGE		 	íizon Sci 650 Wesi íancouve
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FER (SEA URCHINS/SAN CHAMPIA PARVUL OTHER 10d. CAMP 20 d. POIYO CHAIN OF CUSTODY RECO RELINQUISHED BY: Janin NAME	18H STATIC ACUTE 18H STATIC ACUTE 18H STATIC ACUTE 19GH STATIC ACUTE 19GH STATIC ACUTE 19GH STATIC ACUTE 19GH STATIC ACUTE 19GH SURVIVAL AND GROWTH 19HA 7D SURVIVAL AND REPRODUC 1000000000000000000000000000000000000		RANGE		V 	'izon Sci 650 Wes 'ancouve 'anada V 'anada
ACUTE DAPHNIA MAGNA A RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERT (SEA URCHINS/SAN CHAMPIA PARVUL OTHER IOd. CAMPI 20 d. POIYC CHAIN OF CUSTODY RECO RELINQUISHED BY: Janix NAME	18H STATIC ACUTE 18H STATIC ACUTE BRYO VIABILITY 7D SURVIVAL AND GROWTH 18IA 7D SURVIVAL AND GROWTH				ТІМЕ К.14 Та Та Та	'izon Sci 650 Wes 'ancouve 'anada V 'anada el: (604
ACUTE DAPHNIA MAGNA 4 RAINBOW TROUT S MICROTOX CHRONIC SALMONID 7D EMI FATHEAD MINNOW CERIODAPHNIA DU SELENASTRUM GR TOPSMELT 7D SUI ECHINODERM FERT (SEA URCHINS/SAN CHAMPIA PARVUL OTHER 10d. CAMPI 20 d. POIYO CHAIN OF CUSTODY RECO RELINQUISHED BY: Janix	18H STATIC ACUTE 18H STATIC ACUTE 18H STATIC ACUTE 19H STATIC A		RANGE	DATE FCB 9/06 FCB/0/04	V 36 V TIME C 15/4 Fa 1247	⁷ izon Sci 650 Wes ⁷ ancouve anada V 2 anada el: (604 ax: (604

Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada Tel: (604) 224-4331 Fax: (604) 224-0540 USA Tel: (360) 738-0958 Fax: (360) 733-3590

L:QAU/Forms/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.doi

156

CUENT BUTCH DEVELOPMENT ON BUTCH OF STATE AND	FOR LAB USE ONLY	PROJECT NUMBER	R			DATE FCB	10/06	
REPORTING AND BILLING INFORMATION NAME DAROUT TO COMPARENTS: NAME Jachine Becklett COMMANY Jacques Whitford COMMANY ADDRESS 43 TO Daniation Rd. Sth Float ADDRESS Sth Float ADDRESS Sth Float ADDRESS COMMANY ADDRESS Comparent Comparent State Comparent Comparent Province USG Contract Description Contract Contract Province State Contract Province Fax Contract Fax Province Sampling wethor Network Contract Sampling wethor The Contract Province Sampling wethor The Contract Province Sampling wethor The Contract Province Sampling wethor The State Contract Sampling wethor The Contract Province Sampling wethor The Contract Contract Sampling wethor The Contract Contract Sampling wethor The Contret Contract Sampli		CLIENT					at-08	
RESULTS TO: INVICE TO DIP OFFERENTY: NAME Janine Backett COMMANY Jacques Whitford COMMANY Jacques Whitford ADDRESS 43 TO Dominion Rd. Sth Floor Burnaba COMMANY ADDRESS Sth Floor Burnaba COMMANY ADDRESS Sth Floor Burnaba COMMANY Burnaba COMMANY Burnaba COMMANY Burnaba COMMANY Burnaba COMMANY Burnaba Communication Burnaba Communication Burnaba Communication Burnaba Sample Information Burnaba </th <th>REPORTING AND BILLING</th> <th>INFORMATION</th> <th></th> <th></th> <th></th> <th></th> <th></th>	REPORTING AND BILLING	INFORMATION						
Nove Jacques Whitford Commany Accress 4300 Daminion Rd. Accress Sth. Floor Burnaby Burnaby Burnaby Burnaby City Canada Province VSG YL Province City Canada Province VSG YL Province Country Postal code Telephone FAX Pastal code Sample information The Secret / J. Thompson Secret / J. Thompson Pastal code Bure information The Secret / J. Thompson Province FAX Sample information The Secret / J. Thompson Province FAX Sample BY T. Becket / J. Thompson Province FAX Counters The Secret / J. Thompson Province FAX Sample BY T. Becket / J. Thompson Province FAX Actre Dahmer Annue Represent Counters RANGE Province Actre Dahmer Annue Represent Counters RANGE Province Actre	RESULTS TO:			INVOICE TO (IF	DIFFERENT):			
COMMANY ADDRESS Jacques Whitford COMMANY ADDRESS J3 TO Dominion Rd ADDRESS J3 TO Dominion Rd ADDRESS Sth floor Burnaby Brownee VSG LT COMMENT COMMENT COMMENT Soft J56 3014 PROVINCE VSG LLT COMMENT C	MAME Janine Ba	<u>eckett</u>		NAME				
ACORESS 43 TO Dominion Rd. ADDRESS Sth. Floor Sth. Floor Burnaby BC OTTY Canada PROVINCE US6 4L7 OTY PROVINCE COUNTRY PROVINC	COMPANY Jacques	Whitford	l	COMPANY				
Sth. floor Burnaby BC city Cavada PROVINCE USB 4L7 City PROVINCE country Country Province Province country Country Province Province country Province Province Province samples Province Province Province Samples </td <td>ADDRESS 4370 DI</td> <td>minion</td> <td>Rd.</td> <td>ADDRESS</td> <td></td> <td></td> <td></td>	ADDRESS 4370 DI	minion	Rd.	ADDRESS				
Burnaby Bc city PROVINCE VSG 4L7 country PROVINCE samplement Fax	Sth floor				·			
CITY CANADA PROVINCE USG 4LT CITY PROVINCE COUNTRY PROVINCE COUNTRY POSTAL CODE TELEPHONE PAX SAMPLE INFORMATION SAMPLE DRY T. Recket / J. ThrompSon Date Feb 1000 Sector / J. ThrompSon CONTENTS FREQUIRED PROTOCOL PROTO	Burnaby	BC				<u></u>		
COUNTRY DOCUMENT POSTAL CODE POSTAL CODE TELEPHONE FAX SAMPLE INFORMATION FAX SAMPLE INFORMATION SPECIAL INSTRUCTIONS SAMPLE INFORMATION SPECIAL INSTRUCTIONS SAMPLE INFORMATION SPECIAL INSTRUCTIONS SAMPLED BY T. Backett J. Thompson DATE Fack SPECIAL INSTRUCTIONS SAMPLED BY T. Backett J. Thompson DATE Fack SPECIAL INSTRUCTIONS SAMPLED BY T. Backett SPECIAL INSTRUCTIONS CONTAINERT TYPE AND NUMBER Image SPECIAL INSTRUCTIONS CONTAINENT TYPE AND NUMBER Image CONCENTRATION PROTOCOL 100% SCREEN CONCENTRATION CONTROLT BRISTIC ACUTE Image COMMENTS ACUTE DAPPINA ANGRA 48H STATIC ACUTE Image MICROTOX Image Image COMMENTS CHRONIC SLIMOND 70 EMBRY OVAILLAND GROWTH Image	city Canada	PROVINCE	4 41 T	CITY		PROVINCE	·····	
TELEPHONE FAX TELEPHONE FAX TELEPHONE FAX SAMPLE INFORMATION SAMPLE NAME #SO K-Himat/Doughs Channel SAMPLE NAME #SO K-Himat/Doughs Channel SAMPLE NAME #SO K-Himat/Doughs Channel SAMPLE BY T. Backet/J.T. Thompson Date Fab. M/OA TME CONTAINENT THE NAM AUMBER SL Bucket ##SO TOXICITY TESTS REQUIRED PROTOCOL DATE THE AND AUMBER ACUTE DAPHNA MAGNA 48H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMERYO VIABULTY FATHERD MINAWOW 7D SURVIVAL AND GROWTH CERIODAPHNA DUBN 7D SURVIVAL AND GROWTH COMMENT FOR LICATION FEST (SEA URCHINSTAND DOLLAR) COMMENT FOR LICATION FEST (SEA URCHINSTAND DOLLAR) CHANNE MARKING REPETILIZATION TEST (SEA URCHINSTAND DOLLAR) CHANNE ADDIA PERTILIZATION TEST (SEA URCHINSTAND DOLLAR) CHANNE ADDIA PERTIL	COUNTRY 604 426 3014	POSTAL CODE	136 3757	COUNTRY		POSTAL CODE		
SAMPLE INFORMATION SAMPLE NAME # SO Kitimat/Doughs Channel SAMPLE NAME # SO Kitimat/Doughs Channel SAMPLED BY T. Backet/J. T. Thompson DATE F. Backet/J. T. Thompson DATE F. Backet/J. T. Thompson DATE F. Backet/J. T. Thompson CONTAINER TYPE AND RUMBER SL bucket ## 8 TOXICITY TESTS REQUIRED PROTOCOL PROTOCOL CONCENTRATION COMMENTS CONCENTRATION COMMENTS CONCENTRATION COMMENTS CONCENTRATION COMMENTS CONCENTRATION COMMENTS CONCENTRATIC ACUTE MICROTOX CONCENTRATIC ACUTE MICROTOX CHRONC SALMOND 70 EMERTO VIABILITY CHRONC SALMOND 70 SURVIVAL AND REPRODUCTION CHRONC SALMOND 70 SURVIVAL AND REPRODUCTION CHRONCENT FERTULATION TEST (SEL MICHING REPRODUCTION CHANCE ARANGE SALVILA REPRODUCTION OTHER 10 d. Amphipod Survival <td colspan<="" td=""><td>TELEPHONE</td><td>FAX</td><td>40 5150</td><td>TELEPHONE</td><td></td><td>FAX</td><td></td></td>	<td>TELEPHONE</td> <td>FAX</td> <td>40 5150</td> <td>TELEPHONE</td> <td></td> <td>FAX</td> <td></td>	TELEPHONE	FAX	40 5150	TELEPHONE		FAX	
SAMPLENAME # S Kitiwat/Douglas Channel SAMPLING METRICO ILL Van Veen grab SAMPLED BY T. Backet/J.T. Thompson Date Fcb/B/OG IMME CONTAINER TYPE AND INIMER SL Bucket # A S TOXICITY TESTS REQUIRED PROTOCOL PROTOCOL MACROTOX CHROMIC SALMONIO 70 EMBRYO VIABLITY PATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHINA DUBIA 7D SURVIVAL AND GROWTH COMMING SALMONIC 7D SURVIVAL AND GROWTH COMMON FERTILIZATION TEST (GRA URCHINGSAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphiped Survival 20 d. Poly chaete Survival CHAIN OF CUSTOPY RECORD RELINQUISHED BY: JAN AND COMMING SURVIVAL AND CREATE MAKE DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME	SAMPLE INFORMATION							
SAMPLING METHICO ILL Van Veen grab SPECIAL INSTRUCTIONS SAMPLED BY T. Bockett/J.T. Thompson DATE Fxb/B/OB TWE CONTAINER TYPEAD NUMBER SL bucket ###8 TOXICITY TESTS REQUIRED PROTOCOL PROTOCOL PROTOCOL PARMENDA AGNA 48H STATIC ACUTE RAUNBOW TROLT 96H STATIC ACUTE RAUNBOW TROLT 96H STATIC ACUTE RAUNOV 70 SURVIVAL AND GROWTH CERIODAPHNA DUBIA 70 SURVIVAL AND GROWTH COMMON FERTULATION TEST (GREA UNCHISSAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER ID d. AMPHIPOX SULVIVAL 20 d. Pol y chaete Sulvival CHAIN OF CUSTODY RECORD RELINQUISHED BY: JANIA ECCUPE	SAMPLE NAME # S ICH	mat/Down	he Char	mel		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
SAMPLED BY T. BOCKET / J. Thompson DATE FLOOT J. The Content / J. Thompson DATE FLOOT J. The Content of J. The Content of J. J. Thompson CONTAINER TYPE AND NUMBER SL BUCKET ## 8 TOXICITY TESTS REQUIRED PROTOCOL PROTOCOL RANDOW TROLT 98H STATIC ACUTE RANDOW TROLT 98H STATIC ACUTE RECENCE SALMONID 7D SURVIVAL AND GROWTH CERIODAPHNA DUBIA 7D SURVIVAL AND REPRODUCTION SELEMASTRUM GROWTH 72 HINHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHNOOLERM FERTULIZATION TEST (SEA URCHINSSAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER [O d. AMPH: PAC SURVIVAL 20 d. Poly chaete Survival 20 d. Poly chaete Survival RECENCE BY: NAME DATE TIME NAME DATE TIME NAME DATE TIME NAME DATE TIME NAME DATE TIME DA	SAMPLING METHOD	an User (200h	SPECIAL INSTR	UCTIONS	<u> </u>	· · · · · ·	
DATE FEB 14/06 The CONTAINER TYPE AND NUMBER SL BUCKET ##88 TOXICITY TESTS REQUIRED PROTOCOL PROTOCOL PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 98H STATIC ACUTE CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELEMASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND REPRODUCTION SELEMASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND REPRODUCTION OTHER 10 d. AMPHI PARVULA REPRODUCTION OTHER 10 d. BOLY CHARE SURVIVAL AND 10 DATE TIME DATE TIME MARE DATE TIME NAME DATE TIME NAME DATE TIME NAME DATE TIME NAME DATE TIME NAME DATE TIME	SAMPLED BY T BOOK	H/T Th			<u> </u>			
CONTAINER TYPE AND NUMBER SL bucket ##S TOXICITY TESTS REQUIRED PROTOCOL IOBA SCREEN CONCENTRATION CONTAINER TYPE AND NUMBER ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 98H STATIC ACUTE MICROTOX CHRONIC SALMOND 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND REPRODUCTION CERIODAPHNIA DUBIA 70 SURVIVAL AND REPRODUCTION SELEMASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHNODERM FERTILIZATION TEST (SEA UROND OLLARS) CHAMPIA PARVULA REPRODUCTION OTHER [O d. amphi pod Survival 20 d. Pol y chaete Survi Jual CHAIN OF CUSTODY RECORD RELINQUERNED BY: NAME DATE TIME AME	DATE Fab 18/06		ZMUSON	· · · · · · · · · · · · · · · · · · ·				
SL BUCKET THEO 100% SCREEN CONCENTRATION COMMENTS PROTOCOL IOO% SCREEN CONCENTRATION COMMENTS ACUTE DAPHNIA MAGNA 48H STATIC ACUTE Image: Concentration COMMENTS ACUTE DAPHNIA MAGNA 48H STATIC ACUTE Image: Concentration COMMENTS ACUTE DAPHNIA MAGNA 48H STATIC ACUTE Image: Concentration COMMENTS MICROTOX Image: Concentration COMMENTS Image: Concentration Comments MICROTOX Image: Concentration Image: Concentration Image: Concentration Image: Concentration CHRONIC Salumonio 7D EMBRYO VIABILITY Image: Concentration Image: Concentration Image: Concentration CHRONIC Salumonio 7D EMBRYO VIABILITY Image: Concentration Image: Concentration Image: Concentration CHRONIC Salumonio 7D EMBRYO VIABILITY Image: Concentration Image: Concentration Image: Concentration CHRONIC Selenastreum GROWTH 72H INHIBITION Image: Concentration Image: Concentration Image: Concentration TOPEMELT 7D SURVIVAL AND GROWTH Image: Concentration Image: Concentration Image: Concentration Image: Concentration Other Image: Concentration Test Image: Concentration Test Image: Concentration Test Image: Concentration	CONTAINER TYPE AND NUMBER	1 +1 +1 0		<u> </u>				
DATE TIME PROTOCOL CONCENTRATION (PASS/FALL) CONCENTRATION RANGE ACUTE DAPHNIA MAGNA 48H STATIC ACUTE CONCENTRATION (PASS/FALL) CONCENTRATION RANGE ACUTE Image: Concentration (PASS/FALL) CONCENTRATION RANGE CONCENTRATION MICROTOX Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) CONCENTRATION CHRONIC SALMONID 70 EMBRYO VIABILITY Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) CHRONIC SALMONID 70 EMBRYO VIABILITY Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) CERIODAPHNIA DUBIA 70 SURVIVAL AND REPRODUCTION Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) TOPSMELT 70 SURVIVAL AND GROWTH Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) OTHER IO d. Amph: pod Survival Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) OTHER IO d. Amph: pod Survival Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) MAME Image: Date Image: Concentration (PASS/FALL) Image: Concentration (PASS/FALL) NAME Image: Date Image: Concentration (P	DL BUCK	2+ -40						
ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE RINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 70 SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 70 SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. AMPhipod Survival 20 d. Poly chaete Survival CHAIN OF CUSTODY RECORD RELIOUISHED BY: JANIAE BECKET RECEIVED BY: NAME DATE TIME NAME DATE TIME	PROTOCOL			100% SCREEN	CONCENTRATION	CONVENTO		
AUDIE DAPHNIA MAGINA 400 STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE		P:/ 07.170 + 01/75		(PASS/FAIL)	RANGE	COMMENTS		
RAINBOW TROLT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 7D EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphipod Survival 20 d. Poly chaete Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Janine Beckett RECEIVED BY: NAME DATE TIME NAME DATE TIME	ACUTE DAPANIA MAGNA 4	OF STATIC ACUTE						
MICROTOX CHRONIC SALMONID 7D EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH	RAINBOW TROUT 9							
CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM PERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphipod Survival 20 d. Poly chaete Survijal CHAIN OF CUSTODY RECORD RELINQUISHED BY: Jan'ine Beckett RECEIVED BY: NAME DATE TIME	MICROTOX							
FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER IO d. Amphipod Survival 20 d. Poly chaete Survival RELINQUISHED BY: Tanine Bate TIME NAME DATE DATE TIME S. Blightan FEB9/06 1514	CHRONIC SALMONID 7D EME	BRYO VIABILITY						
CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphipad survival 20 d. Polychaete survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Janine Beckett RECEIVED BY: NAME DATE TIME NAME DATE TIME S. Blightaau Feb9/06 1514 Feb/0106 1247	FATHEAD MINNOW	7D SURVIVAL AND GR	OWTH					
SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER IO d. amphiped survival 20 d. Poly chaete Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Jane DATE TIME DATE TIME S. Blightan Feb9/06 ISIY	CERIODAPHNIA DU	BIA 7D SURVIVAL AND	REPRODUCTION					
TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER IOd. amphipad survival 20 d. Poly chaete survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Janie Beckett NAME DATE TIME NAME DATE TIME S. Blightan Feb9/06 1514 Feb9/06 1514	SELENASTRUM GR	OWTH 72H INHIBITION	ł		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. amphipod survival 20 d. Poly chaete survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Janine Beckett RECEIVED BY: NAME DATE TIME NAME DATE TIME NAME DATE TIME TIME TIME DATE TIME J. BIIgham FCB9/06 1514 FCB/0/06 1347	TOPSMELT 7D SUF	RVIVAL AND GROWTH			<u> </u>		<u> </u>	
CHAMPIA PARVULA REPRODUCTION OTHER 10 d. amphipod survival 20 d. Polychaete Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Janine Beckett Received BY: NAME DATE TIME DATE TIME DATE TIME NAME DATE TIME DATE TIME NAME DATE TIME DATE TIME DATE TIME J. Bligham FCB9/06 1514 FCB10/06 1247	ECHINODERM FERT	ILIZATION TEST						
OTHER 10 d. amphipod survival 20 d. Polychaete survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Janine Beckett RECEIVED BY: NAME DATE TIME NAME DATE TIME DATE TIME S. Bligham FCB9/06 1514 FB10/06 1247		REPRODUCTION			·			
20 d. Polychaete Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Janine Beckett RECEIVED BY: NAME DATE TIME NAME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME	OTHER 100. ampl	niped sui	rvival			•		
CHAIN OF CUSTODY RECORD RELINQUISHED BY: NAME DATE DATE TIME NAME DATE DATE TIME DATE <td col<="" td=""><td>201 Priv</td><td>chaete s</td><td>unitual</td><td>,</td><td></td><td></td><td></td></td>	<td>201 Priv</td> <td>chaete s</td> <td>unitual</td> <td>,</td> <td></td> <td></td> <td></td>	201 Priv	chaete s	unitual	,			
RELINQUISHED BY: Janine Beckett RECEIVED BY: NAME DATE TIME NAME DATE TIME DATE TIME S. Bligham FCB9/06 1514 FB10/06 1247	CHAIN OF CUSTODY RECO						a and a second	
NAME DATE TIME NAME DATE TIME DATE TIME	RELINQUISHED BY: Janine	Beckett		RECEIVED BY;				
5. Binghan FB9/06 1514 FB10/06/1247	NAME	DATE	TIME	NAME		DATE	TIME	
FB101061247			·	S.B	lighan	FB9106	1514	
	·				0	FEBIO106	1247	

Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 **Canada** Tel: (604) 224-4331 Fax: (604) 224-0540 **USA** Tel: (360) 738-0958 Fax: (360) 733-3590

L:QAU/Forms/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.dot

,

FOR LAB USE ONLY PROJECT NUMBER				<u>B10/06</u> 210T-0]]9、
REPORTING AND BILLING INFORMATION RESULTS TO:	INVOICE TO (IF DIFF	FERENT):	,		
NAME Janine Beckett	NAME				_
COMPANY Jacques Whitford	COMPANY	-			
ADDRESS 4370 Dominion St.	ADDRESS				90r102
5th floor					
Burnaby B.C.					
Canada PROVINCE 56 467	CITY		PROVINCE		_
COUNTRY 604 436 3 014 604 436 3752	COUNTRY		POSTAL CODE		
TELEPHONE FAX	TELEPHONE		FAX		-
SAMPLE INFORMATION			and a second sec		
sample NAME #9 Kitimat/Douglas Chann	nel				-
SAMPLING METHOD IIL Van Veen grab	SPECIAL INSTRUCTI	IONS			-
SAMPLED BY J. Beckett / T. Thompson					-
PATE Feb \$706 TIME					- 85/84
CONTAINER TYPE AND NUMBER BL hucket #119					- 0.0/2-1
TOXICITY TESTS REQUIRED					
PROTOCOL	100% SCREEN CO (PASS/FAIL) RA		COMMENTS		
ACUTE DAPHNIA MAGNA 48H STATIC ACUTE	100% SCREEN CO (PASS/FAIL) RA	DINCENTRATION ANGE	COMMENTS		• •
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE	100% SCREEN CO (PASS/FAIL) RA	DICENTRATION ANGE	COMMENTS	······································	• • •
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX	100% SCREEN CC (PASS/FAIL) RA		COMMENTS	······································	-
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		-
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		-
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		• • •
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		-
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		• • • •
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 7D EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA UNCHING/SAND DOLL ARS)	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		• • • • •
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 7D EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		• • • • •
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. AMPH pod SULVIVAL	100% SCREEN CC (PASS/FAIL) RA				• • • • •
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 1D d. AMPLI POOD SULVIVAL 20 d. POLY CHARETE SULVIVAL	100% SCREEN CC (PASS/FAIL) RA				Vizon SciTes Inc
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 7D EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphiped Survival 20 d. Poly charte Survival CHAIN OF CUSTODY RECORD	100% SCREEN CC (PASS/FAIL) RA	DINCENTRATION	COMMENTS		Vizon SciTec Inc. 3650 Wesbrook Mall
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphipod Survival CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphipod Survival CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphipod Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Taming Becket	100% SCREEN CC (PASS/FAIL) RA		COMMENTS		Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 21 2
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 70 EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER 10 d. Amphipod Survival 20 d. POLY CHARTE Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: Taning Backett NAME DATE TIME	100% SCREEN CC (PASS/FAIL) RA		COMMENTS	TIME	Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 7D EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER ID d. Amphipod Survival 20 d. POLY CHARTE Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: TON INC. NAME DATE	100% SCREEN CC (PASS/FAIL) RA		COMMENTS	TIME 1514	Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada Tel: (604) 224-4331 Fax: (604) 224-0540
PROTOCOL ACUTE DAPHNIA MAGNA 48H STATIC ACUTE RAINBOW TROUT 96H STATIC ACUTE MICROTOX CHRONIC SALMONID 7D EMBRYO VIABILITY FATHEAD MINNOW 7D SURVIVAL AND GROWTH CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION SELENASTRUM GROWTH 72H INHIBITION TOPSMELT 7D SURVIVAL AND GROWTH ECHINODERM FERTILIZATION TEST (SEA URCHINS/SAND DOLLARS) CHAMPIA PARVULA REPRODUCTION OTHER ID d. Amphipad Survival 20 d. POLY CHARTER Survival CHAIN OF CUSTODY RECORD RELINQUISHED BY: NAME DATE	100% SCREEN CC (PASS/FAIL) RA		COMMENTS 	TIME 1514 1247	Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 Canada Tel: (604) 224-4331 Fax: (604) 224-0540 USA

224-0540 738-0958 Fax: (360) 733-3590

L:QAU/Forms/Requisition- Chain of Custody Forms/Current/Templates/Toxicity Tests Request Form v4.dot

.

FOR LAB USE ONLY PROJECT NUMBER		DATE FEBIOROF
CLIENT		BAMPLE NUMBER
REPORTING AND BILLING INFORMATION		
RESULTS TO:	INVOICE TO (IF DIFFERENT):	
NAME Janine Reckett	NAME	
COMPANY Jacques Whitford	COMPANY	
ADDRESS 4370 DOMINICA ST	ADDRESS	
5th floor		
Burnahy BC		···· ·································
CITY Canada PROVINGE 41-7	CITY	PROVINCE
COUNTRY 604 436 3014 POSTAL CODE	COUNTRY	POSTAL CODE
TELEPHONE FAX	TELEPHONE	FAX
SAMPLE INFORMATION		
SAMPLE NAME # 10 Kitimot/Dunchs Char	nnel	
SAMPLING METHOD	SPECIAL INSTRUCTIONS	
SAMPLED BY J. Beckett / T Thomas Son	·····	
DATE Feb \$1/06 TIME		<u> </u>
CONTAINER TYPE AND NUMBER		······································
TOXICITY TESTS REQUIRED		
PROTOCOL	100% SCREEN CONCENTRATION (PASS/FAIL) RANGE	COMMENTS
ACUTE DAPHNIA MAGNA 48H STATIC ACUTE		
RAINBOW TROUT 96H STATIC ACUTE		
MICROTOX		
CHRONIC SALMONID 7D EMBRYO VIABILITY		
FATHEAD MINNOW 7D SURVIVAL AND GROWTH	· · · · · · · · ·	····
CERIODAPHNIA DUBIA 7D SURVIVAL AND REPRODUCTION		
SELENASTRUM GROWTH 72H INHIBITION		
TOPSMELT 7D SURVIVAL AND GROWTH		
ECHINODERM FERTILIZATION TEST		
CHAMPIA PARVULA REPRODUCTION	·····	
OTHER 10d. amphipod Survival		
20 d. Polychaete Survival	,	
CHAIN OF CUSTODY RECORD		
RELINQUISHED BY: Janine Beckett	RECEIVED BY:	
NAME DATE TIME	NAME	DATE TIME
	5. Brigham	HEB9106 1514
	()	FR10106 124
		10,10,00 12.

Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC Canada V6S 2L2 **Canada** Tel: (604) 224-4331 Fax: (604) 224-0540 **USA** Tel: (360) 738-0958 Fax: (360) 733-3590

C.QAU/Forms/Requisition- Chain of Custody Porms/Current/Templates/Toxicity Tests Request Form v4.dot

90×10?

8.8/8.4

VIZON SCITEC

SAMPLE REQUISITION and CHAIN OF CUSTODY FORM

7

. .

•

		1.41.1 20											ſ
Address: 437		inion	8121				seines Address) (IT differ	ent):				
City: BUM			Province	12	ЪС	トート							
Telephone: Coult-	,92m	201		EAX #	27-17-17-17-17-17-17-17-17-17-17-17-17-17	1 - 2262				;			
							Purchase Orge					3650 Weebrook	3
				Sampled by:	J. DLEACH	CD. (How Des	Project #:		Ř	20650	.12	Vancouver, B.	
	and the			×			Manager. Be	かく	علعه			V6S 212	
				Sam	pla type:			Ana	iysis Req	beted		TEL: (804) 224-4	151
15 working days	¥ ∼ □ [rkıng days	Polable Water		Vegetation		₽	51				FAX: (604) 2241	5
10 working days		Suuch Suuch	Waste Water		Ar		pro op	97)			•	Website: vizonacija	8
		ne day	Soil/Sediment	2	Other		M AC M	<u> </u>					
Client Sam	lpie ID	Date/Time Sampled	Matrix Type	# of Cont.	. Cont. Size/Type	Sample Log #	d105 178 1905	RP					
۱ ال لارا				NEODO A	07-11		5 > 2 >	- \>		2	- CWCV		Τ
2 #22										8			T
α <u></u> # «								> `				<u>c) - 171 - 1</u>	
, #15							7	<u>×</u>				- (4, - 10	
							> 	4				1-76,27-	
5 # 0							2	>				1-181-1	σ
6 7 4							7					S }	
7 #1							>					-91 1 8-	Τ
8 #9					•		2	2					
5										-			Τ
10										+-			
Relinquished by:	5 Bec	Keth Date:	Feb 8	Time:		Received by:	U.R				Loge In	121	Т
Relinquished by:		Date:		Time:		Received by:					2 V V V		Т
Relinquished by:		Date:		Time:		Received hv						2 I.I.I. (C.I. /	T
Relinquished by:		Date:		Time:		Received by:							T
Sample conditions upor	n receipt:					Other Information: (e.a. sampla pr	a-treatme	int holding	UE(0:		lima:	T
	Method o	l Shipment:				AN AL	1961	イン					
						2 ~ ~		5					Τ
	Shipment	condition: (a.g. brea	akage, leakage): _	002)									
)	
									Ū	,		Page A	
·									Ś	5		,	

SCITEC

SAMPLE REQUISITION and CHAIN OF CUSTODY FORM

		W I Z O N	3650 Westmont Mail	Vancouver, B.C.	V6S 212	TEL: (604) 224-4331	. FAX: (604) 224-0540	Website: vizonscitec.com		Comments	15.6°C	الح الأدل	> > >								1 1	ime: /2/ /	me: / イイナ	tte:	me:	sences, etc)	- #1 K		Page_o
		-		ABC 50655,12		sis Requested																Date: ICBY/UH T	Date: (CDI 0/06 T	Date: n	Date: Ti holding time stores - 44 - 4	Sien "Aleize 'afizois 'arm Filmoli "	· Laf CJOR		
Dillion Address HE Jitter-			Purchase Order #:	Project #:	Manager:) Analy	ų. To	pha on		3 March												00			(8.0. samole pre-treatment	l	TOXICITY	>	
		PC: V3V - 4L7	4-436-3752	when B. Thomas	-				ont. Sample	vikhe rog #	060010T-12										Received	Received by:	Bootined by	Received by:	Other Information:				
		<u>i 1</u>	FAX # (PC)	Sampled by 3.8		Sample typ	r Lu Vegetat	Other	# of Cc		×(A									Time:	Time:	Time.	Time:			()		
unit for	2	Provinc	214				ays U Potable Water	Soil/Sediment	ite/Time Matrix amoled Tvne	241.											r Date: Fzb 8	Date:	Date:	Date:		ent:	on:(e.g. breakage, leakage):		
Jacaves	its Dominin	raby	07-436,3c	Secret	urnaround time:		s D 24 hours	s 🗌 Same day	nt Sample ID Sa												od by: J. Becket	ed by:	ed by:	ed by:	ts upon receipt:	Method of Shipm	3 Shipment condition		
Company Name:	Address: 42	City: 124	Telephone: D	Report To:)-		, <u> </u>	10 working day.	5 working day.	Clie		. #8	2 #12	6	+	5	9	7	8	6	10	Relinquish	Relinquish	Relinquish	Relinquish	Sample condition	rozen:		⊔ •×	

. . . .

.

Z	U
6	LLI
ъ.	H
	ū
N	Ø
P	

SAMPLE REQUISITION and CHAIN OF CUSTODY FORM

;

ľ

		WIZON	SCITEC	T-12 Vancouver, B.C.	V6S 2L2	TEL: (604) 224-4331	FAX: (604) 224-0540	Website: vizonscrec.cor	Commante												a: Itma:	ilme:	1 ;me:	s: Time:	orage, safety, deficiencies, etc)	-		
	Billing Address (If different):		Purchase Order #	Project # ABC 5065	Manager:	Analysis Requested	\$1 224	ory	1747															Date	e.g. sample pre-treatment, holding time, st			
		PC:	136-3752	ett/J.Thomas	-				Sample Log #	5	9									Received hv	Received by:	Received by:	Received hv		Other Information: (يوخا
		RC	FAX #: GOUL-L	Sampled by: J. B. clu	Samlo funo.	Salliple type.	L Vegetation	🕅 Other	# of Cont. Cont. Size/Ty	1 31	78 1									ime: 13:30	ime:	ime:	ime:					
1-21-1		Province:				Ē	U Potable Water	Soil/Sediment	e Matrix Týpe											te: Feb 6 T	tie: Ti	te: Ti	te: Ti				breakage, leakage):	
	Dominic	کر ا	36-3014	Beckit	ind time:		r 2 working days	Same day	le tD Date/Tim	F 92	Feb4	•								S. Beckett Da	Da	Da	Da	receint:	Method of Shipment:		Shipment condition: (e.g.	
anv Name	» 4376 8	Burnat	none: (OOY-4	1 To: J Chrine	Turnarou		working days	working days	Client Sampl	10	و									Relinquished by:	Relinquished by:	Relinquished by:	Relinquished by:	Conditions upon				י ב
Como	Addre	City:	Telept	Report		ų	<u><u></u><u>o</u></u>	с С		-	2	6	4	ŝ	9	~	80	6	10					Sample	Frozen:	Cold:	Ambient: N/A	5

Minimized Products Products Products Product FAX # DAU-U-13L-3752 Purchase Older #. Product Sampled by . Redict H/S. Thorppore Products Manager Annyait Product vain Sampled by . Redict H/S. Thorppore Product vain Annyait Product vain Sampled by . Redict H/S. Thorppore Product vain Annyait Product vain Image: Annyait Annoteid Manager Annyait Annyait Annoteid Manager Imager Annyait Annoteid Manager Annyait Annyait Annoteid Manager Annyait Annyait Annoteid Manager Imager Annyait Annoteid Manager Annyait Annoteid Manager <th></th> <th>WIZON</th> <th>3650 Weshronk Mail</th> <th>Vancouver, B.C.</th> <th>V6S 2L2</th> <th>TEL: (604) 224-4331</th> <th>FAX: (604) 224-0540</th> <th>Website: vizonscitec.com</th> <th>Commante</th> <th>د المربقة المراجع</th> <th>Nicuarci</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1 (110);</th> <th>ime:</th> <th>9</th> <th>limæ: ficiencies, etc)</th> <th></th> <th></th>		WIZON	3650 Weshronk Mail	Vancouver, B.C.	V6S 2L2	TEL: (604) 224-4331	FAX: (604) 224-0540	Website: vizonscitec.com	Commante	د المربقة المراجع	Nicuarci						1 (1 10);	ime:	9	limæ: ficiencies, etc)		
MM: MICH Province: Province: Province: Province: Province: FAX # Province: Province: Province: Province: Province: Province: Province: <t< td=""><td>ddress (If different):</td><td>-</td><td>se Order #:</td><td># ABUSDLESS.12</td><td></td><td>Analysis Requested</td><td></td><td>yri Nurf X</td><td>201 1-12 5:001 7-19 7-19 7-19 7-19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>npie pre-freatment, holding time, storage, safety, defic</td><td></td><td></td></t<>	ddress (If different):	-	se Order #:	# ABUSDLESS.12		Analysis Requested		yri Nurf X	201 1-12 5:001 7-19 7-19 7-19 7-19											npie pre-freatment, holding time, storage, safety, defic		
Multi Vicon Province: Kax # Province: Kax # Fax # Fax # Fax # Each Sampled by: Sampled by: Beck working days Potable Water > vegetation 24 hours Potable Water > vegetation 24 hours Potable Water > vegetation 28 hours Potable Water > vegetation 28 hours Potable Water > vir Sampled Type Cont. Rebut Type Cont. Fab 1 % Pater 1 % Pater Time: > Date Time: > Pater Time: > Date: Time: >	Billing A	PC:	-436-3752 Purchas	ett/S. Thompsin Project +	Manage		Sper C	N	pe Sample Log #	2	4					Received by:	Received by:	Received by:	Received by:	Other Information: (e.g. sam		
Prove Prove Prove Polable Polable Polable Polable Polable		ince: BC	FAX # BOUL-	Sampled by: J. Beck	Completion	adinple type:	ater 🗌 Vegetation ter	ent Dither	 # of Cont. Cont. Size/Typ 	18 1	1 30					, Time: 13:30	Time:	Time:	Time:		de):	
	news Whitherd	Prov	-3014	cckett			2 working days U Potable Wi 24 hours D Waste Wai	Same day	Date/Time Matrix Sampled Type	Feb 3	Feb4					Relet Date: Feble	Date:	Date:	Date:	lpt: od of Shipment:	nent condition:(e.g. breakage, leaka	

SAMPLE REQUISITION and CHAIN OF CUSTODY FORM

۰.

SCITEC

V I Z O M S C I T E C

SAMPLE REQUISITION and CHAIN OF CUSTODY FORM

ł

r

F

Derivation Multiple 10 Dorivation Provincian 14 Hilling Address (It different); 14 Fax # 14 Edder 2 Public 12 Variable Vacuation 12 Vacuation 13 Public 14 Public 14 Public 15 Public 15 Public 16 Public 17 Public 17 Public 18 Public 19 Public 10 Public 10 Public 10 Public 10 Public 11 Public 11 Public 11 Public 12 Public 13 Public 14 Public 15 Public 16 Public 17 Public 18 Public 19 Public 10 Public 11 Public 11 Public 11 Public 11 Public 12			NOZIA	3650 Wesbrook Mall	.12 Vancouver, B.C.	V6S 2L2	TEL: (604) 224 4331	FAX: (604) 224-0540	Website: vizonscitec.com		Comments	T Porewater						Time	Time:	Time:	Time:	e, safety, deficiencies, etc)		
To Christian River Province					BUSOLSS		is Requested		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	эү. лү	JOJ Jon Jr Jon Ji	 						Date	Date:	Date:	Date:	, holding time, storage		
And Quess Unit Incl Province:	ng Address (If different			chase Order #:	lect #:	lager:	Analys	•))))	K h	ILS WL	AND HAR			· · · · ·							. sample pre-treatment		
Act dues Unit And 10 Divinion 21 14 Value Province: 14 Value 2 1 2 Sample by: 1 2 Normania 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 1 1	Billi			- 3762 Pur	J. Thompser Pro	Mar		<u>אי</u>			Sample Log #	-	2					Received by:	Received by:	Received by:	Received by:	ther Information: (e.g		
Description Province 10 Diminion N 11 Province X 12 Unimarcound time: Province: 13 Province X 14 Unimarcound time: Province 12 Varieng days Potable Water 13 Province X 13 Province X 13 Province X 14 Sampled Type 15 Fdb 3 T 16 Probled T 17 Fdb 3 T 18 Fdb 3 T 19 Probled T 11 Fdb 3 T 12 Date: T 13 Date: T 14 Date: T 15 Date: T 16 Date: T 17 Date: T 18 Date: T 19 Shipment condition (e.g. breatkage. leatkage.			PC	(#: 604-436,	by J. Beckett	•	ample type:	Vegetation	air Air	Cther	Cont. Size/Type	78	81					30				0		
Jacquees Uhit Hid Journiton Unit Hid A-UBb Dominiton A-UBb<-Dolut		1	ovince: BC	FAX	Sampled		S	Water	Vater [liment	trix # of pe Cont.					 	 	o ⊺ime: 13∹	Time:	Time:	Time:			akage):
A-UZIC-200 A-UZIC-200 MAINE Deverin 2 4 hor 2 2 4 hor 2 1 hor 2 hor	hitter.	on RJ.	Ŀ	5	dett			g days 🔲 Potable	urs 🔲 Waste V	tay LJ Soursec	Date/Time Ma Sampled Týi	203	203					ett Date: Feb 6	Date:	Date:	Date:	vipment:		ndition:(e.g. breakage, lei
	Jacques	inimal of	A a a	1-456-201	wine Be	•,	urnaround time:	s 🔲 2 workin;	24 hot	s LJ Same d	nt Sample ID	1 17	#2. 1					ed by: J. Beck	ed by:	ed by:	ed by:	ns upon receipt:] Method of St	JA,] Shipment co

	2	U.
	Ā	ш
	3	H
		5
		v ۵
	D	•
۰	-	

SAMPLE REQUISITION and CHAIN OF CUSTODY FORM

Drm.inicn Provi Verticitie Potable Waste Wate 2 working days Potable Waste Wate 24 hours 24 hours 24 hours 24 hours 24 hours 24 hours 24 hours 28 waste Wate 24 hours 28 waste Wate 24 hours 28 waste Wate 27 hours 28 waste Wate 28 me day 50/l/sedime 7 hours 17 hours 8 matrix Matrix 6 lD 5ampled 17 hours 5ampled 17 hours 17 hours 18 hours 17 hours 19 hours 17 hours 10 hours 17 hours 10 hours 17 hours

Page __0

}			BCITEC	Vancouver, B.C.	V6S 2L2	TEL: (604) 224-4331	FAX: (604) 224-0540	Website: vizonscitec.com		Comments											Time:	Time:	Time:	Time:	, deficiencies, etc)		
RM	s (if different):		9r #	Por 50655.12		Analysis Requested															Date:	Date:	Date: .	Date:	re-treatment, holding time, storage, safety		
HAIN OF CUSTODY FOR	Billing Address	DC. (15/1-11-2-	136 3752 Purchase Ords	41/5. Thomoson Project #.	Manager	1	ホーロ		P9	e Sample Sample	۶.										Received by:	Received by:	Received by:	Received by:	Other Information: (e.g. sample p		
REQUISITION and CH	4	Wince D		Sampled by: J. Becke		Sample type:	Water D Vegetation	Vater	iment - Uner	rix # of Cont. De Cont. Size/Typ											Time:	Time:	Time:	Time:		-	akage):
SAMPLE	des Whitter	Pre	- 3014	seckett		ie:	working days	24 hours D Waste M		Date/Time Mat Sampled Tyr	Feb.7/06	z									ecketh Date: Feb 7	Date:	Date:	Date:	pt:	d of Shipment:	tent condition:(e.g. breakage, lea
S CITEC	Intrass 4275 DUCOL	N. Rura h	itephone: 604 - 456	sport To: Janine B		Turnaround tim	15 working days	10 working days	C in clas Summer	Client Sample ID	, #q	2 #IO	3	4	5	6	7	60	6	10	Relinquished by: 3. B	Relinquished by:	Relinquished by:	Relinquished by:	mple conditions upon receil	xzen: 🔲 Metho	nbient: LI Shipm

8.8/8.4

Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 13W9 Tel: 250-785-8281 Fax: 250-785-8286 5N6 Tel: 403-214-5431 Toll Free: 1-866-722-6231 Fax: 403-214-5430 L7L 6A4 Tel: 905-331-3111 Toll Free: 1-888-257-3684 Fax: 905-331-4567		SIS REQUESTED:	1 2 2 3 2 4 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3	AMMON BTEX PAH	VVV 060210J-13 JJ-14, T-15, J-16	1111 1-20 1121 12-12 12-12 12-20	VVV 7-22 J123 J24 J-25	VVV 1-26 J-23 J-28 J-23 J-23	 V V		y apply Relinquished BY: Date Feb. 8/06 Received BY: Date Feb. 7/06 y apply J. Beclevet Time S. B Time S. G Relinquished BY: Date Received BY: Date FC/06 Relinquished BY: Time S'S Time J. 4.7	FORILARIURE ONLY COOLER SEAL INTACT? SAMPLE TEMPERATURE ONLY COOLEN SEAL INTACT? SAMPLE TEMPERATURE ONLY	
ALS EDUICOTMENTAI excellence in analytical testing burlington, ON 5420 Mainway Difve, Unit 5 UT	SEND REPORT TO: CHAIN OF CUST	CLIENT SACQUES WHITIOLO ATTN: JUCKES ANALYS	ADPRESS: 43 TO AUTIVITION CITY: BULTADY PROV.: BL POSTAL CODE/VSU-4L7 TELEPHONE: LON-436-3514 FAX: BUY-436- SAMPLER: J-BC/Reft M PROJECT NAME & NO.: 436 SOLSS.12 QUOTE NO.: 2	REPORT FORMAT: HARDCOPY EMAIL - ADDRESS: FAX EXCEL PDF OTHER: S3	+ 2006/02/01 TIME	本2 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二					TURN AROUND REQUIRED: COUTINE RUSH - SPECIFY DATE: (surcharge may send invoice to: SAME AS REPORT INVOICE FORMAT: HARDCOPY PDF FAX DIFFERENT FROM REPORT (provide details below)	SPECIAL INSTRUCTIONS:	

ALS Environmental and scalance in analytical resting to scalance in analytical resting and analytical resting the scalance in analytical resting and and the scalance in analytical resting and analy	Tel: 604-253-4188 Toll Free: 1-800-665-0243 Fax: 604-253-6700 W9 Tel: 250-785-8281 Fax: 250-785-8286 N6 Tel: 403-214-5431 Toll Free: 1-868-722-6231 Fax: 403-214-5430 L 6A4 Tel: 905-331-3111 Toll Free: 1-868-257-3684 Fax: 905-331.4567 CODY FORM	is requested:	23456		2724	1 2 3 4 5 6	NOTES (sample specific comments, due dates, etc.)	1 1 1 0 0 0 2 0 2 + 42 - 43 - 44 - 45 - 46 - 4 2		58,53-54-55-56-57	1-1-1-1-1-1-58-59-60-61-62-63	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					RELINQUISHED BY: DATE COLOC		COOLER SEAL INTACT? SAMPLE TEMPERATURE	SEE WHITEPAPER FOR SOURCE VERSIONR_08
ALS Environmental acceleros in analytical testing tro. Wincouver, BC 1980 TAS acceleros in analytical testing acceleros in analytical acceleros in analytical ac	iumun Street V5L 1K5 8820 tooth Street V1J 3 Anteid Circle SE T2G 5I airway Drive, Unit S L7 IAIN OF CUST	ANALYS	-		- I	H1 	MTRIX		 	,	2	>	 			_ (surcharge may app	F 🗌 FAX			
ALS Environment acom axcellence in analytical axcelues LUMitford Als Contact Als Contact Al	AL Vancouver, BC 1988 Tri Fort St. John, BC #2 - 6 testing calgary, AB #2 - 21 Hig Burlington, ON 5420 M ATTM -		POSTAL CODE V5(+ H	52 SAMPLER: J. B. C. K.		Ë	DATE/TIME COLLECTED M	2006/02/03 1700	20066/02/04 900	2006/02/04 1400	2006/02/04 1000	2006/02/04 1530				DATE:)RMAT: П HARDCOPY П PDF s below)			
	ALS Environmentá 	270 Decision	Nahv Bov BC	04436 304 Fax 604 436 37			SAMPLE IDENTIFICATION	54	#L	¥.	*6	!				sequirred: 🙀 routine 🖂 rush - Specify d	0: SAME AS REPORT INVOICE FOI	UCTIONS:		

V I KON BCITEC

SAMPLE REQUISITION and CHAIN OF CUSTODY FORM

١

		MOZIA	3850 Weshrook Mai	Vancouver, B.C.	V6S 2L2	TEL: (604) 224-4331	. FAX: (804) 224-0540	Websita: vizonscitec.com		Comments	12-20	-72 -73	-74-75	-76 - 77 -	56- 86-		-91 -82	-83, 84			1.21+	Lime: しいけ イ	lime:		iciancias atri	411			Page of		
				2656.12	۲.	Jested	•	•			TONE090	>									Date: HPS/1/06	Date (C)/06	Date:	Date:	time storace safety del	10 1 C	1 C) 010			6	
on Address III differenti.			chase Order #:	Ed #.	lager. Ben Wheele	Analysis Regu	SK T	47) 21)	√ Y Ma	ept- 105 78		>		>		>		>			S.B				sample pre-treatment. holding	10.11.41				0	Ś
Dill		120-417	3752 Pur	H/J. Thomas Proj	Mar					Sample Log #	>										Received by:	Received by:	Received by:	Received by:	Other Information: (e.g.	C/V AV	4.100				
		ΡĊ	- me - t	ed by: 5 . Becket		Sample type:	C Vegetation	₹ □	M Other	Cont. Size/Type	11-201000							-													
		Province: 13C		Sampl			otable Water	/aste Water	oil/Sediment	Matrix # o Type Con	₩ 0(658 Time:	Time:	Time:	Time:			de leakade).				
44.41. 201	นโหโคว		~ 30H	4			vorking days	24 hours	ame day 🛛 🗌 Sc	Date/Time Sampled											clet Date: F	Date:	Date:	Date:	Ċ:	t of Shipment:	wit condition: (e. g. breaka				
	55. 4372 Dor	Burnaby	hone: OOU-USC	1 To: S. Becker		lurnaround tim	working days	working days	working days L S	Client Sample ID		#Z	#8	#12	#10		#1	6#			Relinquished by: 3. Bc	Relinquished by:	Relinquished by:	Relinquished by:	e conditions upon receip	Method	Shipme	.			
Comp	Addre	City:	Telep	Repo			15	5	۳ 			2	3	4	5	9	^	60	6	₽					Sampl	Frozen:	Cold: Mablen	V N			

,

216940-11-	pplied & ed in Cold Analyst Rm	1ES TVO	es JD	ES 7.60	es JD	ES JD.	es kS	ES TWO	VES gP	QC SA	ES TUO		RM: 1604F01v1 2005/08/01
Project # 📈	Odor Stor	None	Nove	No use X	None 7	None	vene Y	None	Neme	nor	NONE Y		FO
	Endemic Animals Removed	Noue	NONE	Nove	25 mart worns	nort	More	NONE	ADNE	Nort	Cove		
ample Descriptions	Type of Debris Removed	t mall branch	swall petintes ?	many wood debris	sout mons	iots of varies t	poocn liems	sandl churles of Ksennights Icts of word acan's	small amount of cocksyshells	small number of	Lors of wards	<u>.</u>	
Sedimento	Grain Size	j.re	Fire	Fire	Live .	FINE KS	Fire	Fire water	Fine	FN	Five		section Form
	Date Homogenised / Subsampled	OG Feb 23	06 ED 23	CC FED 23	06 Feb /123	06 Feb-23	06 Feb 33	06 66 23	66Feba3	52 GAT 00	jeb 23/86		to Minch Comple D
	Vizon Sample # / Name	0-5010090	0602105-02	0602107-03	1-0-2012090	0602107-05	06 021UT-06	0602103-07	0602107-09	01-5012090	21-2012090		
	Sample Name	JWJ	TWZ	JW3	J.W.Y	JWS	JWC	JW7	5W9	DMD	JW12		

nun i inindincen N:\BIOASSAY\FOHMS\Sediment lests Misc\Sample

.

5

ł	·		Sediment 5	ample Descriptions		Project #	0-11-0	94512
Sample Name	Vizon Sample # / Name	Date Homogenised / Subsampled	Grain Size	Type of Debris Removed	Endemic Animals Removed	Odor	N Applied & Stored in Cold Rm	Analyst
SWR	0602105-12	co.Waro7	flive	r/a	~ (~	'n(œ		CM
JWC	060210T-06	Foremoo	1. ve	ma	m/a	n/a	>	z
Jwg	0000 (et-09	OG Haros	grey-brow Fine	n wa	e n	wla	$\mathbf{\mathcal{S}}$	Q
F. M. F.	to-J012090	0047503	lighter Fine exsiectowite	w (a	n(>	n(z	С	KS
01010	6602107-10	COMADY	Fire bran	m(*	~[o	rla	>	CM
Jwz	0602107-02	porter 07	greylbron	~[~	۴ (ه	a/e	>	F
Jwy	ha-5212090	60 Mars 07	Fre etumped.	~)w	u (a	u/a	5	\mathcal{D}
Jul	10-1012090	06-Mar-07	And charoliste brown	em	ula	rla	*	\mathbf{X}
JWS	0662105-05	60-18M-09	coarse Oney -	ula is debris	w(c	trulys	7	A
5m2	0602105-03	obMer 07	- Strategy	N/E	الر (م	w[a)	4
JWB	0602105-00	f one had of	dark brown	hone lades knood chunks	nla	vottan eggs	2	X
Imp	0602125-11	oblacr07	Greet	large sock & wood brits how removed	~[~	لمع	2	GM
N:\BIOASSAY\F	ORMS/Sediment Tes	sts Misc\Sample D	escription Form			-	FORM: 160/ 2005	F01v1 /08/01

3 ġ

SEAWATER CHARACTERISATION

This section of the report contains the analytical chemistry reports for analysis of the seawater samples. The reports are presented in the following order:

Dissolved Metals

- PAHs
- BTEX
- Ammonia, pH, and Sulphide
- Salinity and pH

METHODS:

Dissolved Metals Concentrations in Seawater:

Analysis conducted using procedures adapted from US EPA and Puget Sound Water Quality Authority, 1995, "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples". Select trace metals were extracted by SPR-IDA chelation prior to analysis. See analytical report from subcontractor for more details.

PAH Concentrations:

Analysis was conducted using guidelines from EPA Methods 3510C and 8270 (SW-846), which including using a liquid-liquid extraction with dichloromethane, and analyzing the extracts using GC/MS (SIM).

BTEX (Benzene, Toluene, Ethyl Benzene, Xylene) Concentrations:

Analysis was conducted using procedures based on EPA Methods 624/8240.8260, which involving sparging with a Purge and Trap apparatus using GC/MS. Analyses were conducted by a subcontractor.

Ammonia Concentrations:

Vizon SOP 5330 (Colorimetric Analysis of Ammonia Nitrogen in Water and Wastewater). Current Version. Adapted from: Sheiner D. 1976. Determination of Ammonia and Kjeldahl Nitrogen by Indophenol Method. *Water Research*. Vol. <u>10</u>:31-36. Pergammon Press. Similar in principle to: Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 20th Edition, 1998. Method 4500 – NH3 F.

Sulfide Concentrations:

SM 4500 S²⁻ F (Iodometric Method) in Standard Methods for the Examination of Water and Wastewater, 20th ed., 1998.

Salinity and pH:

Calibrated conductivity meter and pH meter.

ALS Environmental

CERTIFICATE OF ANALYSIS

Date: March 14, 2006

ALS File No. X2210

Report On: 2-11-0965B Seawater Analysis

Report To:

Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC V6S 2L2

Received:

February 17, 2006

ALS ENVIRONMENTAL per:

Sur Z

Sime Buric, B.Sc. - Client Services Can Dang, B.Sc. - Project Chemist

File No. X2210 REMARKS

Please note that the metals detection limits have been increased due to the elevated concentration of Sodium in the samples.

Also note that some of the results for some samples for Aluminum have been reported as less than detection limits due to contamination.

File No. X2210

Ì

RESULTS OF ANALYSIS - Seawater

Sample ID		SITE 4 060210	SITE 5 060210	SITE 6 060210	SITE 7 060210	SITE 2 060210
Sample Date		06-02-04 1	06-02-04 2	3-02 06-02-04 3	06-02-04 4	5-75 06-02-07 5
Dissolved Met	als					
Aluminum	D-AI	<0.10	<0.10	<0.30	<0.10	<0.10
Antimony	D-Sb	<0.010	<0.010	<0.010	<0.010	<0.010
Arsenic	D-As	0.00107	0.00185	0.00108	0.00157	0.00116
Barium	D-Ba	0.0083	0.0076	0.0068	0.0074	0.0093
Beryllium	D-Be	<0.050	<0.050	<0.050	<0.050	<0.050
Bismuth	D-Bi	<0.050	<0.050	<0.050	<0.050	<0.050
Boron	D-B	3.5	3.6	3.4	3.7	3.9
Cadmium	D-Cd	0.000117	0.000090	0.000109	0.000125	0.000154
Calcium	D-Ca	310	324	301	318	342
Chromium	D-Cr	<0.050	<0.050	<0.050	<0.050	<0.050
Cobalt	D-Co	0.000061	0.000132	0.000062	0.000104	0.000061
Copper	D-Cu	0.000924	0.00107	0.000971	0.00117	0.000961
Iron	D-Fe	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	D-Pb	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Lithium	D-Li	<0.50	<0.50	<0.50	<0.50	<0.50
Magnesium	D-Mg	1070	1120	1040	1120	1190
Manganese	D-Mn	0.00161	0.00954	0.00509	0.0111	0.00699
Mercury	D-Hg	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Molybdenum	D-Mo	0.0089	0.0095	0.0091	0.0087	0.0096
Nickel	D-Ni	0.000714	0.000732	0.000701	0.000764	0.000747
Phosphorus	D-P	<3.0	<3.0	<3.0	<3.0	<3.0
Potassium	D-K	326	341	315	336	362
Selenium	D-Se	0.00057	<0.00050	<0.00050	<0.00050	<0.00050
Silicon	D-Si	1.32	1.26	1.20	1.27	1.50
Silver	D-Ag	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Sodium	D-Na	7960	8290	7680	8180	8820
Strontium	D-Sr	5.17	5.29	5.00	5.49	5.63
Thallium	D-Tl	<0.010	<0.010	<0.010	<0.010	<0.010
Tin	D-Sn	<0.010	<0.010	<0.010	<0.010	<0.010
Titanium	D-Ti	<0.10	<0.10	<0.10	<0.10	<0.10
Uranium	D-U	0.00189	0.00234	0.00183	0.00224	0.00258
Vanadium	D-V	<0.10	<0.10	<0.10	<0.10	<0.10
Zinc	D-Zn	0.00114	0.00966	0.00702	0.0212	0.00165

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

File No. X2210 **RESULTS OF ANALYSIS - Seawater**

Sample ID		SITE 12 060210	SITE 10 060210	SITE 1 060210	SITE 9 060210	SITE 3 060210
Sample Date ALS ID		J-77 06-02-07 6	J-79 06-02-07 7	5-92 06-02-07 8	J-84 06-02-07 9	J-48 06-02-03 <i>10</i>
Dissolved Met	als					
Aluminum	D-Al	<0.10	<0.10	<0.10	<0.80	<0.40
Antimony	D-Sb	<0.010	<0.010	<0.010	<0.010	<0.010
Arsenic	D-As	0.00102	0.00102	<0.00020	0.00079	0.00131
Barium	D-Ba	0.0168	0.0074	0.0082	0.0076	0.0135
Beryllium	D-Be	<0.050	<0.050	<0.050	<0.050	<0.050
Bismuth	D-Bi	<0.050	<0.050	<0.050	<0.050	<0.050
Boron	D-B	3.5	3.6	3.9	3.7	3.7
Cadmium	D-Cd	0.000174	0.000107	0.000127	0.000114	0.000101
Calcium	D-Ca	317	319	326	321	307
Chromium	D-Cr	<0.050	<0.050	<0.050	<0.050	<0.050
Cobalt	D-Co	0.00213	<0.000050	0.000145	0.000056	0.000273
Copper	D-Cu	0.000703	0.000786	0.000822	0.000942	0.00120
Iron	D-Fe	0.043	<0.010	<0.010	<0.010	<0.010
Lead	D-Pb	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Lithium	D-Li	<0.50	<0.50	<0.50	<0.50	<0.50
Magnesium	D-Mg	1080	1140	1130	1110	1050
Manganese	D-Mn	1.48	0.00287	0.0137	0.00204	0.0538
Mercury	D-Hg	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Molybdenum	D-Mo	0.0091	0.0081	0.0092	0.0095	0.0095
Nickel	D-Ni	0.000845	0.000614	0.000736	0.000694	0.000877
Phosphorus	D-P	<3.0	<3.0	<3.0	<3.0	<3.0
Potassium	D-K	332	336	347	338	324
Selenium	D-Se	0.00099	<0.00050	<0.00050	<0.00050	<0.00050
Silicon	D-Si	2.51	1.11	1.29	1.12	1.74
Silver	D-Ag	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Sodium	D-Na	8050	8210	8460	8280	7860
Strontium	D-Sr	5.14	5.42	5.83	5.72	5.69
Thallium	D-TI	<0.010	<0.010	<0.010	<0.010	<0.010
Tin	D-Sn	<0.010	<0.010	<0.010	<0.010	<0.010
Titanium	D-Ti	<0.10	<0.10	<0.10	<0.10	<0.10
Uranium	D-U	0.00216	0.00131	0.00177	0.00200	0.00197
Vanadium	D-V	<0.10	<0.10	<0.10	<0.10	<0.10
Zinc	D-Zn	0.00970	0.00576	0.00341	0.00498	0.00119

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

File No. X2210

ì

Appendix 1 - QUALITY CONTROL - Replicates

Seawater		SITE 2 060210 J-73 06-02-07	SITE 2 060210 J-73 QC # 488487
Dissolved Met Aluminum Antimony Arsenic Barium Beryllium	als D-Al D-Sb D-As D-Ba D-Be	<0.10 <0.010 0.00116 0.0093 <0.050	<0.10 <0.010 0.00116 0.0091 <0.050
Bismuth	D-Bi	<0.050	<0.050
Boron	D-B	3.9	3.8
Cadmium	D-Cd	0.000154	0.000158
Calcium	D-Ca	342	340
Chromium	D-Cr	<0.050	<0.050
Cobalt	D-Co	0.000061	0.000060
Copper	D-Cu	0.000961	0.000979
Iron	D-Fe	<0.010	0.030
Lead	D-Pb	<0.000050	<0.000050
Lithium	D-Li	<0.50	<0.50
Magnesium	D-Mg	1190	1180
Manganese	D-Mn	0.00699	0.00681
Mercury	D-Hg	<0.000010	<0.000010
Molybdenum	D-Mo	0.0096	0.0094
Nickel	D-Ni	0.000747	0.000732
Phosphorus	D-P	<3.0	<3.0
Potassium	D-K	362	356
Selenium	D-Se	<0.00050	<0.00050
Silicon	D-Si	1.50	1.39
Silver	D-Ag	<0.0010	<0.0010
Sodium	D-Na	8820	8640
Strontium	D-Sr	5.63	5.64
Thallium	D-Tl	<0.010	<0.010
Tin	D-Sn	<0.010	<0.010
Titanium	D-Ti	<0.10	<0.10
Uranium	D-U	0.00258	0.00265
Vanadium	D-V	<0.10	<0.10
Zinc	D-Zn	0.00165	0.00137

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated.

File No. X2210 Appendix 2 - METHODOLOGY

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows

Metals in Water

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" 20th Edition 1998 published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotplate or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by atomic absorption/emission spectrophotometry (EPA Method 7000 series), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma - mass spectrometry (EPA Method 6020).

Recommended Holding Time: Sample: 6 months Reference: EPA

Laboratory Location: ALS Environmental, Vancouver

Metals in Seawater

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedures may involve preliminary sample treatment by acid digestion or filtration (EPA Method 3005A). Instrumental analysis of the seawater is by atomic absorption/emission spectrophotometry (EPA Method 7000 series), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma - mass spectrometry (EPA Method 6020).

Recommended Holding Time: Sample: 6 months Reference: Puget

Laboratory Location: ALS Environmental, Vancouver

Trace Metals in Seawater by SPR-IDA Chelation

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995, and with procedures adapted from Cetac Technologies Incorporated. A suspended particulate resin (SPR), consisting of immobilized iminodiacetate (IDA) on a divinylbenzene polymer, is used to chelate and preconcentrate metals in seawater. Instrumental analysis is by inductively coupled plasma mass spectrometry (ICPMS) and/or routine atomic absorption spectrophotometry

File No. X2210 Appendix 2 - METHODOLOGY - Continued

techniques (EPA 7000 series).

Recommended Holding Time: Sample/Extract: 6 months Reference: Puget

Laboratory Location: ALS Environmental, Vancouver

Mercury in Seawater

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. The procedure involves a cold-oxidation of the acidified seawater sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

Recommended Holding Time: Sample: 28 days Reference: Puget

Laboratory Location: ALS Environmental, Vancouver

Results contained within this certificate relate only to the samples as submitted.

This Certificate Of Analysis shall only be reproduced in full, except with the written approval of ALS Environmental.

End of Report

									 _								_			-				_						 	
	VIZON SCITEC	3650 Wesbrook Mail	Canada	V6S 2L2 TEL: (604) 224-4331	FAX: (604) 224-0540																										
								C/MS (SIM).	060210J-64	#7 water	Feb. 04/06	<0.08	<0.16	60.08 0.08	80.08 0.09	<0.08 <0.08	<0.08	<0.08	<0.16	non	<0.08	<0.08	0.08 60.08	00.00 00.00	<0.08	<0.08	80.08 60.08	<0.08	0.00		
								nalysed by GC	060210J-58	#6 water	Feb. 04/06	<0.07	<0.14	<0.07	<0.07	<0.07	<0.07	<0.07	<0.14	0000	<0.07	<0.07	60.07	<0.07	<0.07	<0.07	×0.0>	<0.07	0.00		
								xtracts were a	060210J-52	#5 water	Feb. 04/06	<0.08	<0.16	80.09 80.09 80.09	80.08 90.09	<0.08	0.16	<0.08	<0.16	01.0	0.10	0.09	0.18	0.53	<0.08	<0.08 20	80.08 <0.08	<0.08	1.31		
ORT								iethane . The e	060210J-42	#3 water	Feb. 03/06	<0.06	<0.12	0.06 0.06	0.06 0.06	<0.06	0.15	<0.06	60.12 0.12	6.10	0.22	0.20	0.48	1.34	<0.06	0.13	c: 0 90.0≽	0.08	3.19 3.19		
NALYSIS REP								with dichtorom	060210 J-4 1	#12 water	Feb. 07/06	<0.05	0.61	12.0 20.02	50.05 20.05	<0.05	0.35	<0.05	<0.1 4 1 1	-	1.01	0.89	1.05	3.94	<0.05	0.87	0.08	0.05	11.5		
ONS (PAHs) AI								iquid extraction	060210J-33	#10 water	Feb. 07/06	<0.05	0.31	<0.05 0.05	<0.05	<0.05	0.11	<0.05	<0.1	74-0	0.47	0.04	40.05 0.05	0.19	<0.05	<0.05	<0.05 <0.05	0.11	1.32		
HYDF 3B(l used a liquid-l	060210J-29	#9 water	Feb. 07/06	<0.05	€0.1	60.0>	0.05 <0.05	<0.05	0.14	<0.05	60.1 20.0	770	0.13	0.09	0.05	0.27	<0.05	<0.05	<0.05	0.14	1.00		
R AROMATIC								.). This methoo	060210J-21	#4 water	Feb. 07/06	0.11	<0.1	50.05	<0.05	0.12	0.31	<0.05	<0.1 0 EA	1	1.07	0.96	1.47 1.65	4.69	<0.05	0.06	<0.05<	0.06	10.6		
OLYNUCLEAI								8270 (SW-846	060210J-20	#2 water	Feb. 07/06	0.11	40.1	40.05 A0.05	<0.05	<0.05	<0.05	<0.05	- 0 • •		0.41	0.39	0.76	1.86	<0.05	0.36	0.05 0.05	0.25	4.42		
đ								ds 3510C and {	060210J-16	#1 water	Feb. 07/06	<0.05	<0.1	60.00 90 00	<0.05	<0.05	<0.05	<0.05	- 00 0	2	0.30	0.27	0.46	1.48	<0.05	0.23	o.05 ⊲0.05	0.14	3.04		
	• •							EPA Methor		Method	Blank	<0.05		8.9 7	<0.05 0.05	<0.05	<0.05	<0.05 4		20-20	<0.05	<0.05	9.9 7 7	<0.05 <0.05	<0.05	0.05 20.05	<0.05	<0.05			
			hitford					elines from l		Detection	Limit	0.05	0.10	0.U5	0.05	0.05	0.05	0.05	0.10		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05			
	pril 11, 2006	2-11-0965B	Jacques Wh			ary Scot		using guide			ICWQG	1.1	3.4		5.8	3.0	0.4	0.012	4 4		0.04	0.025	0.018 ISD	2		0.015					
	×	~	-		VN:Kerrie Serber	NTACT: Rosem	5	iis was carried out	Vizon No:	nescription	E DATED:	ilene	•	Inaptralene butono	hthene	n	threne	ene	AWLDAHA		hene	;	i) anthracene	 fluoranthene) fluoranthene) pyrene	a,h)anthracene	1,h,i)perylene	AHS		
	Date:	Project Nc	Client:		ATTENTIC	VIZON CO	Comment	The analys			SAMPL	Naphthe	Quinolin	Z-Metny	Acenapt	Fluoren	Phenant	Anthrac	Total I		Fluorant	Pyrene	Benzo(a	Benzolb	Benzo(k	Benzo(a	Dibenz(2	Benzo(g	Total P		

tesufts are reported in micrograms per liter (ug/L) iCWOG interim Canadian Water Quality Guidelines iSD : Insufficient Data Note: Benzo(b)fluoranthene and Benzo(k)fluoranthene reported as total. Detection Limits for sample #s 3, 5, 6 & 7 are higher due to less than 1.0L sample volume used for analysis.

ABRAT

Approved by:

·

.

.....

. .

.

1.BENZENE XYLENES (BTF Involving sparging with a Purg 10J-32 060210J-40 0602 10J-32 060210J-40 0602 10 #12 w ater water w 07/06 Feb. 07/06 Feb. 0.1 0.1 <0.1 < 0.1 <0.1 < 0.1 <0.1 <	(LBENZENE XYLENES (BTEX) ANALYSIS REPC Involving sparging with a Purge and Trap apparatus 10J-32 060210J-47 060210J-51 10J-32 060210J-47 060210J-51 10 #12 #3 #4 101 #0.1 0.1 0.1 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1	LBENZENE XYLENES (BTEX) ANALYSIS REPORT Involving sparging with a Purge and Trap apparatus using GC/MS. Involving sparging with a Purge and Trap apparatus using GC/MS. 100-32 060210J-61 060210J-51 101-32 060210J-61 060210J-57 101 #12 #3 #4 #5 #3 #4 #5 atter water water water 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 <0.1 <0.1 <0.1	LBENZENE XYLENES (BTEX) ANALYSIS REPORT Involving sparging with a Purge and Trap apparatus using GC/MS. Involving sparging with a Purge and Trap apparatus using GC/MS. 100 #12 #3 #4 #5 #6 100 #12 #3 #4 #5 #6 101 #12 #8 #6 #6 101 #12 #12 #6 #6 101 #12 #3 #4 #5 #6 ater water water water water 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 </th
	SX) ANALYSIS REPC le and Trap apparatus and Trap apparatus 10J-47 060210J-51 #4 #1 0.1 <0.1	:X) ANALYSIS REPORT le and Trap apparatus using GC/MS. and Trap apparatus using GC/MS. 10.47 060210J-51 03/06 Feb. 04/06 0.1 <0.1	X) ANALYSIS REPORT e and Trap apparatus using GC/MS. e and Trap apparatus using GC/MS. e and Trap apparatus using GC/MS. 10J-47 060210J-57 ater water #4 #5 #6 #3 #4 #5 #6 #4 #5 #6 10J-47 060210J-57 060210J-63 #3 #4 #5 #6 10J-47 060210J-63 10 #4 #5 #6 Feb. 04/06 Feb. 04/06 Feb. 04/06 0.1 <0.1

Results are reported in micrograms per liter (ug/L) Surrogate Recoveries ranges from 90 - 100 %

. . .

יקD BOOK

LIC/

Project #: 2-11-0965B Company: Jacques Whitford Contact: Janine Beckett

N

PAGE NUMBER: 145924

		Sample	NH ₃	pH	S	
BCR #	Sample	Date	mg N/L	ph Units	mg/L	
060210J-13	#1 .	7-Feb-2006	3 —	7 53		
060210J-14	#1	7-Feb-2006	0022			
060210J-17	#2	7-Feb-2006	6	7.72		
060210J-18	#2	7-Feb-2008	50.087	_		
060210J-22	#8	7-Feb-2006	3	7.12		
060210J-23	#8	7-Feb-2006	6. 21 (B. 1.	a		
060210J-26	#9	7-Feb-2006	3 _	761		
060210J-27	#9	7-Feb-2006	0.016			
060210J-30	#10	7-Feb-2006		7.77		
060210J-31	#10	7-Feb-2006	0.015	_	_	
060210J-34	#11	7-Feb-2006	· · · · · · · · · · · · · · · · · · ·	7.12		
060210J-35	#11	7-Feb-2006	N.2.			······
060210J-38	#12	7-Feb-2006		7.26		e e a la calación de
060210J-39	#12	7-Feb-2006	0.117			
060210J-43	#3	3-Feb-2006	-		0.259	
060210J-44	#3	3-Feb-2006	0.094			
060210J-45	#3	3-Feb-2006	_	763		
060210J-48	#4	4-Feb-2006	0 107		·····	
060210J-49	#4	4-Feb-2006		7.94/7.97		
060210J-53	#5	4-Feb-2006	_	_	0.213	
060210J-54	#5	4-Feb-2006	0.036	_		
060210J-55	#5	4-Feb-2006		198		
060210J-59	#6	4-Feb-2006			0.168	
060210J-60	#6	4-Feb-2006	0.017			
060210J-61	#6	4-Feb-2006		783		
060210J-65	#7	4-Feb-2006		_	0.289	
060210J-66	#7	4-Feb-2006	0.024	_		
060210J-67	#7	4-Feb-2006		794		
060210J-70	#11	7-Feb-2006	_		0.305	harrish tarri rishirin
060210J-72	#2	7-Feb-2006		_	0.366	
060210J-74	#8	7-Feb-2006			0.427	
060210J-76	#12	7-Feb-2006		_	0.442	
060210J-78	#10	7-Feb-2006			0.320	
060210J-80	#4	7-Feb-2006			0.686	· ·····
060210J-81	#1	7-Feb-2006	_		0.366	
060210J-83	#9	7-Feb-2006		[0.274	
Date Analyzed:			FEB 15/06	Feb.27106	Feb 20/06	
ac	<u> </u>	· · · · ·			, 	· · · · · · · · · · · · · · · · · · ·
TRUE	1		0.103	6.21		
Found			0 11	6.40		N.K.
			<u> </u>			
Initials			łb.	YL_		
				<u> </u>		5 -
Test Methods:			5330 / 5331	5325		:

analysis 1.R. = not required

IN

 \checkmark

Vizon SciTec Vancouver, BC	M P o l	arine Sediment	Tests ements		
Client # & Name:	#128 Jacoves	Whitford	Start Date:	N/A	
Date Measured:	Site Sezwater	06-Feb-28	Start Time:	N/A	
	Temperature				

Sample ID	(°C)	рН	Salinity	Analyst
#)	18.7 17.8 Kg	7.14500	28.7%	KS
#2	167	7/3	29.5%	KS
#3	19.2	7,4	26.5%	KS
甘上	17.6	75	26.9%0	KS
#5	17.7	7.5	28.0%	KS
#6	18.4	7.6	26.2%	KS
#7	17.1	7.5	27.9%	15
#8	18.2	7.0	29.4%	KS
#9	16.8	7.4	27.6‰	KS
#10	18.9	7.5	27.7%	KS
#11	16.7	7.0	27.1%	KS
#12	[7.0	7.3	26.9%	KS

Comments Allowed come up to 6 oven MNO'N enn in. ۵۵ Sam (DND 330) NOTW (M Mad #? Sali Meter Mar A 4See m * OH <u>(erio nete</u> H ß

N:\BIOASSAY\FORMS\Sediment Tests Misc\Marine Sediment Porewater Measurements

SEDIMENT CHARACTERISATION

This section of the report contains the analytical chemistry reports for analysis of the sediment samples. The reports are presented in the following order:

- Total metals
- PAHs
- BTEX
- Total Organic Carbon and Moisture Content
- Particle Size Distribution
- Total PCBs
- Dioxins and Furans
- AVS/SEM
- Porewater Ammonia and Sulphide
- Porewater Salinity and pH

At the time of this report, only the preliminary AVS/SEM results were available. The final results will be submitted at a later date.

For the final analytical report for the dioxins and furans analyses, a full data package was supplied on CD ROM by the subcontractor. This CD ROM will be sent with the Vizon report.

METHODS:

Total Metals Concentrations in Sediment:

Sediment samples for total metals analysis were prepared based on Strong Acids Leachable Metals (SALM) in Soil – CSR Analytical Method 8 procedure (BCMELP 2001) and analysed by Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS) and Cold Vapour Atomic Fluorescence Spectroscopy (CVAFS). The analytical batch consisted of 10 sediment samples one of which was digested and analyzed in 5 replicates as per Ocean Disposal Permit Guidlines and four QA/QC samples (two digestion blanks and two Certified Reference Material samples). Subsamples equivalent of 2g of dry sample were digested with 1:1 mixture of Hydrochloric and Nitric Acid at 90°C following overnight cold digestion. Each extract was brought to volume (50 mL) with deionised water. The extracts were analysed using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Cold Vapour Atomic Fluorescence Spectroscopy (CVAFS), for mercury. The samples were prepared and analyzed for Total Metals at Vizon. The Mercury analysis was conducted by a subcontractor.

PAH Concentrations:

The analysis was conducted using guidelines from EPA Methods 3520C and 8270 (SW-846), which involves a liquid-liquid extraction with dichloromethane. The extracts were analysed by a subcontractor by GC/MS (SIM).

BTEX (Benzene, Toluene, Ethyl Benzene, Xylene) Concentrations:

Volatile organic compounds were extracted with methanol following a procedure from the BC Ministry of Water Land and Air Protection Analytical Method for Contaminated Sites, 1999, "Volatile Hydrocarbons in Solids by GC/FID". Extracts were analysed by direct injection capillary column gas chromatography with mass spectrometric detection (GC/MS). See analytical report from subcontractor for more details.

Total Organic Carbon:

Samples were digested in acid, then analysed using a Leco Induction Furnace combustion/volumetric analysis technique. Analyses were conducted by a subcontractor.

Moisture content was analysed gravimetrically by heating a separate sample portion at 105 °C and measuring the weight loss. Analyses were conducted by a subcontractor.

Particle Size Distribution:

Samples were sieved for particle size distribution according to ASTM C136-84A (Standard Method for Sieve Analysis of Fine and Coarse Aggregates). Select samples were analysed on a Malvern Mastersizer 2000 by a subcontractor.

Total PCB Concentrations:

Samples were soxhlet extracted with acetone/hexane at a 50:50 ratio, concentrated, cleaned up on Florisil, and analysed by GC/ECD.

Dioxins and Furans Concentrations:

Analyses were conducted in general accordance with US EPA Method 1613 Revision B. For further details, see the subcontractor's analytical report (on CD ROM).

Ammonia Concentrations:

Vizon SOP 5330 (Colorimetric Analysis of Ammonia Nitrogen in Water and Wastewater). Current Version. Adapted from: Sheiner D. 1976. Determination of Ammonia and Kjeldahl Nitrogen by Indophenol Method. *Water Research*. Vol. 10:31-36. Pergammon Press. Similar in principle to: Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 20th Edition, 1998. Method 4500 – NH3 F.

Sulfide Concentrations:

SM 4500 S²⁻ F (Iodometric Method) in Standard Methods for the Examination of Water and Wastewater, 20th ed., 1998.

Salinity and pH:

Calibrated conductivity meter and pH meter.

			SIS REPO	DRT		
Date of Analysis: TATE of Report: ROJECT No: APPROVED BY: CLIENT:	9-Mar-06 15-Mar-06 2-11-965B Anna Becalska Jacques Whitf 4370 Dominior	ord 1 Street, 5th Floor			SCIT 3650 Wesbrock Ma Vancouver, B.C. Canada TEL: (604) 224-433 FAX: (604) 224-054	PR E C all
CONTACT:	Burnaby, BC Canada V5G Janine Becket	4L7 t				ru
COMMENTS:	Total Metals an	alysis of sediment sa	amples.			
METHODS:	ICP-AES Analys	sis of Total & Dissolv	ed Metals in Water	and Wastewater,	5240/5245 v.3.1	
Login ID:	DL	060223J-01	060223J-02	060223J-03	060223J-03	060223J-04
Client ID:		JW1	JW2	JW3	Duplicate	JW4
		23-Feb-06	23-Feb-06	23-Feb-06	23-Feb-06	23-Feb-06
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Ag Silver	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Al Aluminium	10	35800	35900	35300	36900	35600
As Arsenic	1	2	2	5	6	3
3 Boron	3	42	42	55	57	57
3a Barium	0.05	147	146	145	145	145
3e Beryllium	0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05
Rismuth	5	<5	<5	<5	<5	<5
Ja Calcium	10	15000	16100	14800	15000	15100
Cd Cadmium	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
Co Cobalt	0.3	14.7	14.2	14.4	15.3	13.4
Cr Chromium	0.3	52.5	53.5	52.6	56.8	53.2
Cu Copper	0.5	48.4	47.0	47.4	52.0	45,1
e iron	5	39400	37200	39000	40900	36900
lg Mercury	0.0005	0.0221	0.0162	0.0180	0.0127	0.0182
😘 Potassium	3	9940	10100	9830	10200	9630
lie Lithium	1	54	54	52	58	50
Ag Magnesium	10	16600	16200	16500	17400	15900
In Manganese	0.05	677	634	659	701	626
lo Molybdenum	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
la Sodium	10	16100	16000	16900	16100	15300
li Nickel	0.3	23	24	24	24	23
Phosphorus	2	1060	799	992	1350	762
b Lead	1	5	4	4	4	4
Sulfur	10	2090	2230	2100	2060	1900
b Antimony	1	<1	<1	<1	<1	<1
e Selenium	1	<1	<1	<1	<1	<1
i Silicon	3	321	203	252	324	145
in Tin	2	<2	<2	<2	<2	<2
r Strontium	0.5	140	142	138	141	142
i Titanium	0.5	484	1490	1630	2110	682
Thallium	1	<1	<1	<1	<1	<1
Vanadium	0.5	86	135	136	142	107
n Zinc	0.3	84.2	79.1	81.1	85.9	75 9
*			·			10.0
,						

			<u>/SIS REPC</u>)RT		
Date of Analysis:	9-Mar-06				VIZQ) N
ATE OF Report:	15-Mar-ub			 ▼	SCIT	FC
- HOJECT NO:	2-11-9050				······	
APPROVED BY:	_ Anna Becaiska				3650 Wesbrook Ma Vancouver, B.C.	dl .
CLIENT:	Jacques Whitfe 4370 Dominion Burnaby, BC Canada V5G	ord 1 Street, 5th Floor 41 7			Canada TEL: (604) 224-433 FAX: (604) 224-054	1 •0
CONTACT:	Janine Beckett	t.				
COMMENTS	Total Metals an	alvsis of sediment st	amples			
METHODS	ICP-AES Analy	sis of Total & Dissol	red Metals in Water	and Wastewater	5240/5245 v 3 1	<u> </u>
				and wastewater,	5240/5245 v.5.1	
	1					
Login ID:	DL	060223J-05	060223J-06	060223J-08	060223J-09	060223J-10
Client ID:		JW5	JW6	6MC	JW10	JW12
		23-Feb-06	23-Feb-06	23-Feb-06	23-Feb-06	23-Feb-06
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Ag Silver	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Al Aluminium	10	32500	35000	25400	32800	35500
As Arsenic	1	2	4	3	3	2
B Boron	3	53	58	33	46	53
Ba Barium	0.05	130	147	121	135	150
e Beryllium	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bismuth آد	5	<5	<5	<5	<5	<5
Ca Calcium	10	16200	14800	11100	15200	15600
Cd Cadmium	0.05	<0.05	<0.05	<0.05	<0.05	0.06
Co Cobalt	0.3	12.8	13.5	14.2	14.3	14.1
Cr Chromium	0.3	48.2	52.3	43.3	54.4	52.7
Cu Copper	0.5	43.1	44.1	34.3	40.8	46.7
Fe Iron	5	34000	36400	37300	38200	38000
Hg Mercury	0.0005	0.0168	0.0185	0.0121	0.0115	0.0167
K Potassium	3	8880	9830	6860	8670	10100
Li Lithium	1	50	48	54	52	50
Mg Magnesium	10	15100	15840	15500	16400	16300
Mn Manganese	0.05	566	625	513	596	646
Mo Molybdenum	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Na Sodium	3	15800	15600	11500	12800	16500
Ni Nickel	0.3	21.8	22.2	18.0	24.6	22.6
P Phosphorus	2	718	1040	1390	1190	686
Pb Lead	1	5	4	2	3	4
S Sulfur	10	3787	2136	1707	1919	2730
Sb Antimony	1	<1	<1	<1	<1	<1
Se Selenium	1	<1	<1	<1	<1	<1
Si Silicon	3	202	632	304	253	189
Sn Tin	2	<2	<2	<2	<2	<2
Sr Strontium	0.5	135	135	92	125	144
li Titanium	0.5	627	1750	1480	1830	1060
1 Thallium	1	<1	<1	<1	<1	<1
/ Vanadium	0.5	94.4	130	117	134	136
Zn Zinc	0.3	73.6	76.2	80.2	79.1	79.9
•				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		,		· · · · · · · · · · · · · · · · · · ·	1	
				/ ····································		·

			ANALY	SIS REPC)RT		
Date ATE RO	of Analysis: E of Report: JECT No:	9-Mar-06 15-Mar-06 2-11-965B			X	SCITI 3650 Wesbrook Ma) RE E C
AF	10VED D1	_ Allila Doulonu				Canada	
	NT: TACT:	Jacques White 4370 Dominion Burnaby, BC Canada V5G 4 Janine Beckett	ord Street, 5th Floor 4L7 t			TEL: (604) 224-433 FAX: (604) 224-054	1.0
	COMMENTS	: Total Metals an:	alvsis of sediment sa	amples.			
	METHODS:	: ICP-AES Analys	sis of Total & Dissolv	ed Metals in Water	and Wastewater,	5240/5245 v.3.1	
Logir	n ID:	DL	060223J-07	060223J-07	060223J-07	060223J-07	060223J-07
Clien	it ID:		JW7	Rep-1	Rep-2	Rep-3	Rep-4
			23-Feb-06				
<u> </u>	A11	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Ag a	Silver	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Al r Ac /	Areonic	10	6	4	5	<u> </u>	6
RF	Roron		57	54	68	57	59
ີ າລ [Barium	0.05	152	167	170	162	154
Je F	Bervilium	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Bi F	Bismuth	5	<5	<5	<5	<5	<5
Ca (Calcium	10	16000	16900	17500	17000	16700
Cd (Cadmium	0.05	0.09	<0.05	0.09	0.08	0.11
Co (Cobalt	0.3	14.4	14.8	15.2	15.2	14.9
Cr C	Chromium	0.3	55.5	56.7	58.9	57.6	56.3
Cu (Copper	0.5	51.1	49.7	51.5	51.4	51.3
Fe	Iron	5	40400	39500	40900	40100	40300
Hgl	Mercury	0.0005	0.0137	0.0141	0.0136	0.0147	0.0114
ĸ	Potassium	3	10700	11100	11500	10900	10700
	Lithium		55	53	56	55	54
Mg	Magnesium		1/300	17200	17800	1/400	1/400
	Manganese	0.05	-0.5	-05	-0.5	1.2	012
Na	Sodium	3	18000	17800	18400	18300	18300
Ni	Nickel	0.3	23.7	23.7	24.4	24.0	23.6
P	Phosphorus	2	1370	1000	1300	1160	1280
Pb	Lead	1	5	5	5	4	5
S a	Sulfur	10	3300	3120	3310	3170	3630
Sb	Antimony	1 ·	<1	<1	<1	<1	<1
Se	Selenium	1	<1	<1	<1	<1	<1
Si	Silicon	3	368	314	369	301	310
Sn	Tin	2	<2	<2	<2	<2	<2
Sr	Strontium	0.5	150	154	157	153	149
<u> </u>	Titanium	0.5	2240	1770	2230	1960	2210
1 1.	Thallium	1	<1	<1	<1	<1	<1
<u> </u>	Vanadium	0.5	144	144	149	145	144
<u>zn</u>	Zinc	0.3	84.9	84.0	87.5	86.3	87.3

Date: Project No:	April 10, 2-11-096	2006 5B				:									^{cr)}	S C I T E C 5 C I T E C 650 Westrook Mail	
Nient:	Jacques	Whitford													~ 0	ancouver, B.C. anada	
															~ +	6S 2L2 F1 - (604) 224.4331	
															- 12-	AX: (604) 224-0540	
ATTENTION: Kerrie Serb																•	
/IZON CONTACT: Rosen	nary Sco	Ť															
Comments:																	Ī
'he analysis was carried ou	ıt using gı	uidelines fr	om EPA Me	thods 3520C a	and 8270 (S\	W-846). This	method used	l a liquid-liquí	d extraction v	with dichloron	nethane . Th∈	s extracts we	re analysed t	by GCMS (S	SIM).	·	
			,														
Vizon No:			Certified		060223,-01	060223J-02	060223J-02	060223J-03	060223J-04	060223J-05	060223J-05	060223J-06	060223J-07	060223J-08	060223J-09	060223J-10	
nescription		·	Reference	Expected Concentration		Trial 1	JWZ Trial 2	5WL	JW4	JW5 Trial 1	JW5 Trial 2	JW6	2MC	6MC	JW10	JW12	
SAMPLE DATED:	ISQG ug/g	Detection Limit	Value ug/g	Range ug/g	Sediment Feb.23/06												
Napthalene	0.0346	0.05	0.25	0.18 - 0.32	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
2-Methylnapthalene	0.0202	0.05			€0.0 5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenapthylene	0.0059	0.05	0.15(a)		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acenaphtnene	0.0067	0.0 102		•	0.05 20.05	-0.05 -0.05	<0.05	0.02 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
rluorene Dheanathrean	0.0067	60'0	500	1 20 6 20	50.05	<0.05	cu.u>	€0.05 6 0		6.0° \$	€0.02 \$	<0.05	40.05 11	<0.05	<0.05	<0.05	
Anthracene	0.0469	0.05	0.38	4.20 - 0.53 0.23 - 0.53	60.05 60.05	61.02 20.05	50.05 20.05	0.10 60.05	20.05 20.05	0.0 200/	5.07	41.0 2007	0.15 20.07	6.02 20.02	0.02 0.05	0.09	
Total LMW-PAHs					0.15	0.15	0.17	0.18	0.00	0.13	0.11	0.14	0.15	0.0	0.0	60.0	
Fluoranthene	0.1130	0.05	8.40	5.80 - 11.0	0.33	0.32	0.37	0.39	<0.05	0.26	0.22	0.28	0.30	<0.05	0.06	0.22	
Pyrene	0.1530	0.05	5.80	4.00 - 7.60	0.33	0.32	0.38	0.40	<0.05	0.26	0.22	0.28	0.30	<0.05	0.06	0.24	
Benzo(a) anthracene	0.0748	0.05			0.23	0.24	0.26	0.27	<0.05	0.16	0.13	0.17	0.18	<0.05	<0.05	0.13	
Chrysene	0.1080	0.05	2.80	1.90 - 2.40	€0.05	0.28	0.30	0.32	0.05	0.20	0.16	0.21	0.22	<0.05	<0.05	0.16	
Benzo(k) fluoranthene		0.05			10.05		200	2.5	50.05 20.05	-47 -47 -47	0.30	0.43	0.46	0.06	0.09	0.49	
Benzo(a) pyrene	0.0888	0.05			0.32	0.32	0.39	0.36	<0.05	0,20	0.19	50.02 7 0	50.05 0 24	0.02 20 02	80.02 90.02		
Indeno(1,2,3-cd)pyrene		0.05	1.30	0.60 - 2.00	0.24	0.23	0.27	0.25	<0.05	0.16	0.14	0.17	0.17	<0.05	<0.05 <0.05	0.11	
Dibenz(a,h)anthracene	0.0062	0.05	0.20	0.10 - 0.30	0.05	0.05	0.06	0.06	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Benzo(g,h,i)perytene		0.05			0.23	0.22	0.25	0.23	<0.05	0.16	0.15	0.18	0.17	<0.05	<0.05	0.12	
Total HMW-PAHs					2.34	2.58	2.98	2.98	0.00	1.84	1.57	1.96	2.04	0.06	0.21	1.64	
Total PAHs					2.49	2.73	3.15	3.16	0.00	1.97	1.68	2.10	2.19	0.06	0.21	1.73	

POLYNUCLEAR AROMATIC HYDRO. . ABONS (PAHs) ANALYSIS REPORT

(a) Upper limit amount present is not greater than 0.15 ug/g

Results are reported in micrograms per fiter (ug/g) on a dry weight basis ISQG Interim Marine Sediment Quality Guidelines Note: Benzo(b fluoranthene and Benzo(k)fluoranthene reported as total

Approved by: _

ASSant

ALS Environmental

CERTIFICATE OF ANALYSIS

Date:

March 20, 2006

ALS File No. X3044

Report On: 2-11-0965B Soil Analysis

Report To:

Vizon SciTec Inc. 3650 Wesbrook Mall Vancouver, BC V6S 2L2

Received:

March 10, 2006

ALS ENVIRONMENTAL per:

Andii 5

Andre Langlais, M.Sc. - Project Chemist Sime Buric, B.Sc. - Client Services

File No. X3044 REMARKS

Please note that the Detection limits were increased for some of the samples due to low sample volume.

File No. X3044 RESULTS OF ANALYSIS - Sediment/Soil

Sample ID	JW1	JW2	JW3	JW4	JW5
Sample Date ALS ID	06-02-23 1	06-02-23 2	06-02-23 3	06-02-23 4	06-02-23 5
Physical Tests Moisture %	59.4	65.4	59.7	54.2	57.6
<u>Non-Halogenated Volatiles</u> Benzene Ethylbenzene Styrene Toluene meta- & para-Xylene	<0.080 <0.10 <0.10 <0.10 <0.10 <0.10	<0.080 <0.10 <0.10 <0.10 <0.10 <0.10	<0.080 <0.10 <0.10 <0.10 <0.10 <0.10	<0.080 <0.10 <0.10 <0.10 <0.10	<0.080 <0.10 <0.10 <0.10 <0.10 <0.10
ortho-Xylene Total Xylenes	<0.10 <0.20	<0.10 <0.20	<0.10 <0.20	<0.10 <0.20	<0.10 <0.20

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per dry kilogram except where noted. < = Less than the detection limit indicated. VPH = Volatile Petroleum Hydrocarbons.

File No. X3044 **RESULTS OF ANALYSIS - Sediment/Soil**

Sample ID	JW6	JW7	JW9	JW10	JW12
Sample Date ALS ID	06-02-23 6	06-02-23 7	06-02-23 8	06-02-23 9	06-02-23 10
Physical Tests Moisture %	61.9	60.5	50.2	52.3	62.7
<u>Non-Halogenated Volatiles</u> Benzene Ethylbenzene Styrene Toluene meta- & para-Xylene	<0.080 <0.10 <0.10 <0.10 <0.10	<0.080 <0.10 <0.10 <0.10 <0.10	<0.040 <0.050 <0.050 <0.050 <0.050 <0.050	<0.040 <0.050 <0.050 <0.050 <0.050 <0.050	<0.080 <0.10 <0.10 <0.10 <0.10
ortho-Xylene Total Xylenes	<0.10 <0.20	<0.10 <0.20	<0.050 <0.10	<0.050 <0.10	<0.10 <0.20

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per dry kilogram except where noted. < = Less than the detection limit indicated. VPH = Volatile Petroleum Hydrocarbons.

File No. X3044

Appendix 1 - QUALITY CONTROL - Replicates

Sediment/Soil	JW4	JW4	
	06-02-23	QC # 491459	
Physical Tests			
Moisture %	54.2	54.1	
Non-Halogenated Volatiles			
Benzene	<0.080	<0.080	
Ethylbenzene	<0.10	<0.10	
Styrene	<0.10	<0.10	
Toluene	<0.10	<0.10	
meta- & para-Xylene	<0.10	<0.10	
ortho-Xylene	<0.10	<0.10	
Total Xvlenes	<0.20	<0.20	

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per dry kilogram except where noted. < = Less than the detection limit indicated. VPH = Volatile Petroleum Hydrocarbons.

File No. X3044 Appendix 2 - METHODOLOGY

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows

Moisture in Sediment/Soil

This analysis is carried out gravimetrically by drying the sample at 103 C for a minimum of six hours.

Recommended Holding Time: Sample: 14 days Reference: Puget

Laboratory Location: ALS Environmental, Vancouver

Volatile Organic Compounds in Sediment/Soil

Volatile Organic Compounds (VOC) are extracted from sediment or soil with methanol, following a procedure from the British Columbia Ministry of Water Land and Air Protection (BCWLAP) Analytical Method for Contaminated Sites "Volatile Hydrocarbons in Solids by GC/FID" (Version 2.1 July 1999). Aliquots of the extract are analyzed by direct injection capillary column gas chromatography with mass spectrometric detection (GC/MS), using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Method 8260B, published by the United States Environmental Protection Agency (EPA).

Recommended Holding Time: Sample: 14 days Extract: 40 days Reference: EPA

Laboratory Location: ALS Environmental, Vancouver

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the sum of the DLs of the individual Xylenes.

Laboratory Location: ALS Environmental, Vancouver

Results contained within this certificate relate only to the samples as submitted.

This Certificate Of Analysis shall only be reproduced in full, except with the written approval of ALS Environmental.

End of Report

Analysis Report

Analysis of Soil Samples

Vizon SciTec Inc. (FKA BC Research Inc.)

Vancouver, BC

Att'n: K. Serben

V6S 2L2

3650 Wesbrook Mall

5**71** 0

CANTEST LTD.

Professional Analytical Services

4606 Canada Way Burnaby, B.C. V5G 1K5

Fax: 604 731 2386

Tel: 604 734 7276

1 800 665 8566

CHAIN OF CUSTODY: PROJECT NAME: PROJECT NUMBER: P.O. NUMBER:

REPORT ON:

REPORTED TO:

187279 Sediments 2-11-0965B R69046

NUMBER OF SAMPLES: 12

DATE SUBMITTED: February 24, 2006

REPORT DATE: March 3, 2006

GROUP NUMBER: 70225007

SAMPLE TYPE: Soil

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other information is available on request.

TEST METHODS:

Moisture in Soil - analysis was performed gravimetrically by heating a separate sample portion at 105 C and measuring the weight loss.

Total Organic Carbon - samples were digested in acid then analyzed using a Leco Induction Furnace combustion/volumetric analysis technique.

TEST RESULTS:

(See following page)

CANTEST LTD.

Richard S. Jornitz

Page 1 of 2

43

REPORTED TO: Vizon SciTec Inc.

REPORT DATE: March 3, 2006

CANES

GROUP NUMBER: 70225007

Conventional Parameters in Soil

CLIENT SAMPLE IDENTIFICATION:	SAMPLE DATE	CANTEST ID	, Moisture	Total Organic Carbon C
JW1	Feb 23/06	602250054	54.3	1.28
JW2	Feb 23/06	602250055	55.0	1.29
JW3	Feb 23/06	602250056	56.7	0.99
JW4	Feb 23/06	602250057	53.4	1.08
JW5	Feb 23/06	602250058	55.1	1.82
JW6	Feb 23/06	602250059	53.2	1.17
JW7	Feb 23/06	602250060	58.6	0.75
JW9	Feb 23/06	602250061	57.1	1.63
JW10	Feb 23/06	602250062	49.9	0.78
JW12	Feb 23/06	602250063	54.4	1.25
Control D	Feb 23/06	602250064	23.6	<
Control M	Feb 23/06	602250065	23.5	<
DETECTION LIMIT			0.1	0.5
UNITS			%	% dry wt.

% dry wt. = percent, dry weight basis

% = percent

< = Less than detection limit

JW1					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative	_	
2.000	0.78	0.5	0.5	99.5	
1.000	0.62	0.4	0.8	99.2	
0.500	0.99	0.6	1.4	98.6	
0.250	1.94	1.1	2.5	97.5	
0.150	2.68	1.6	4.1	95.9	
0.063	6.78	4.0	8.1	91.9	
0.053	2.11	1.2	9.3	90.7	
0.038	3.64	2.1	11.4	88.6	
<0.038	151.55	88.6	100.0	0.0	
Total	171.09	100.0			

Ϊ

JW3 Screen % Retained Mass % Passing (mm) (g) Interval Cumulative 2.000 0.02 0.0 0.0 100.0 1.000 0.50 0.3 0.3 99.7 0.500 0.52 0.3 0.7 99.3 0.250 0.81 0.5 1.2 98.8 0.150 0.95 0.6 1.8 98.2 0.063 3.24 2.1 3.9 96.1 0.053 1.23 4.8 0.8 95.2 0.038 2.50 1.6 6.4 93.6 <0.038 143.17 93.6 100.0 0.0 Total 152.94 100.0

JW5					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative	-	
2.000	4.94	2.5	2.5	97.5	
1.000	6.13	3.1	5.6	94.4	
0.500	7.44	3.8	9.3	90.7	
0.250	7.19	3.6	13.0	87.0	
0.150	5.54	2.8	15.8	84.2	
0.063	11.73	5.9	21.7	78.3	
0.053	3.10	1.6	23.2	76.8	
0.038	4.46	2.3	25.5	74.5	
<0.038	147.64	74.5	100.0	0.0	
Total	198.17	100.0			

JW2 % Retained Screen Mass % Passing Interval Cumulative (mm) (g) 2.000 0.50 0.3 0.3 99.7 1.000 0.95 0.6 0.9 99.1 0.500 1.44 0.9 98.2 1.8 0.250 2.23 1.4 3.2 96.8

1.4

3.8

1.1

2.2

88.3

100.0

4.6

8.5

9.6

11.7

100.0

95.4

91.5

90.4

88.3

0.0

2.22

6.05

1.72

3.46

139.55

158.12

JW4					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative	-	
2.000	0.03	0.0	0.0	100.0	
1.000	0.38	0.2	0.2	99.8	
0.500	0.6	0.3	0.5	99.5	
0.250	1.17	0.6	1.1	98.9	
0.150	1.49	0.8	1.9	98.1	
0.063	4.44	2.2	4.1	95.9	
0.053	1.57	0.8	4.9	95.1	
0.038	4.09	2.1	7.0	93.0	
<0.038	183.57	93.0	100.0	0.0	
Total	197.34	100.0			

JW6					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative	_	
2.000	0.01	0.0	0.0	100.0	
1.000	0.52	0.2	0.2	99.8	
0.500	0.61	0.3	0.5	99.5	
0.250	1.28	0.6	1.1	98.9	
0.150	1.65	0.8	1.9	98.1	
0.063	7.08	3.3	5.2	94.8	
0.053	3.32	1.5	6.7	93.3	
0.038	5.13	2.4	9.1	90.9	
<0.038	194.83	90.9	100.0	0.0	
Total	214.43	100.0			

Screen Assay of Jacques Whitford Samples 2-11-0965B

0.150

0.063

0.053

0.038

< 0.038

Total

JW7					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative		
· 2.000	0.82	0.5	0.5	99.5	
1.000	2.12	1.3	1.8	98.2	
0.500	2.40	1.5	3.3	96.7	
0.250	2.61	1.6	4.9	95.1	
0.150	1.85	1.1	6.0	94.0	
0.063	6.23	3.8	9.8	90.2	
0.053	2.50	1.5	11.4	88.6	
0.038	3.85	2.4	13.7	86.3	
<0.038	140.85	86.3	100.0	0.0	
Total	163.23	100.0			

JW10					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative		
2.000	0.01	0.0	. 0.0	100.0	
1.000	0.48	0.2	0.2	99.8	
0.500	1.25	0.5	0.7	99.3	
0.250	4.55	1.9	2.6	97.4	
0.150	13.77	5.6	8.2	91.8	
0.063	66.71	27.3	35.5	64.5	
0.053	12.17	5.0	40.5	59.5	
0.038	10.23	4.2	44.7	55.3	
<0.038	135.09	55.3	100.0	0.0	
Total	244.26	100.0			

JW9					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative		
2.000	0.45	0.3	0.3	99.7	
1.000	1.95	1.3	1.6	98.4	
0.500	2.06	1.4	3.0	97.0	
0.250	2.16	1.5	4.5	95.5	
0.150	1.53	1.0	5.5	94.5	
0.063	5.63	3.8	9.3	90.7	
0.053	2.49	1.7	10.9	89.1	
0.038	3.50	2,4	13.3	86.7	
<0.038	128.87	86.7	100.0	0.0	
Total	148.64	100.0			

JW12					
Screen	Mass	% R	etained	% Passing	
(mm)	(g)	Interval	Cumulative		
2.000	0.28	0.2	0.2	99.8	
1.000	1.63	1.0	1.2	98.8	
0.500	1.57	1.0	2.2	97.8	
0.250	2.2	1.4	3.6	96.4	
0.150	1.69	1.1	4.7	95.3	
0.063	3.35	2.1	6.9	93.1	
0.053	1.21	0.8	7.6	92.4	
0.038	2.72	1.7	9.4	90.6	
<0.038	141.77	90.6	100.0	0.0	
Total	156.42	100.0			

•

MASTERSIZER

Result Analysis Report

Sample Name: JW7 - Average					SOP	SOP Name:						Measured: Wednesday, April 05, 2006 2:35:13 PM							
Sample Source & type: Works = Vizon Scitec Inc- Kerrie Serben						Meas Viviar	Measured by: Vivian						Analysed: Wednesday, April 05, 2006 2:35:15 PM						
Particle Name: Soil Particle RI: 1.230 Dispersant Name: Water						Acces Hydro Abso 0.5 Dispe 1.330	Accessory Name: Hydro 2000S (A) Absorption: 0.5 Dispersant RI: 1.330						Analysis model: General purpose Size range: 0.020 to 2000.000 Weighted Residual: 0.664 %			Sensitivity: Normal Obscuration: m 16.80 % Result Emulation: Off			
Concentration: 0.0105 %Vo!						Span 5.419	Span : 5.419						Uniformity: 1.81			Result units: Volume			
Specific Surface Area: 1.52 m²/g						Surfa 3.947	Surface Weighted Mean D[3,2]: 3.947 um						Vol. Weighted Mean D[4,3]: 24.219 um						
(d(0.1):	1,5	00	um				d(0.5):	10.8	189	um				d(0.9)): 60.5	13 1	um	
Particle Size Distribution																			
Volume (%)		4.5 4 3.5 2.5 2 1.5 1 0.5 0.0	01		0.1			Partic		10 Size (μm			100		100		100 90 80 70 60 50 40 30 20 10 0 0		
E	JW7 -	Avera	age, W	/ednesc	lay, Ap	ril 05, 2	2006 2:3	5:13 PM											
	lze (μm) 0.020	VolUn	der %	Size (µr 0.11	n) Vol Un	der %	Size (µm) 0.626	Vol Under %). D.	Size (µm) 3.499	VolU	nder %	Size (µm) 19.572	Vol Under 66.	% 47	Size (µm) 109.466	Vol Under 96.	<u>%</u> 50	
	0.024 0.027 0.030		0.00 0.00 0.00	0.13 0.15 0.16	52 58	0.00 0.00 0.00	0.766 0.848 0.938	3.94 4.68 5.47		4.285 4.742 5.247		26.93 29.10 31.35	23.966 26.520 29.346	71. 74. 76.	73 21 57	134.041 148.326 164.133	97. 97. 98. 98.	69 12 47	
	0.033 0.037 0.041		0.00 0.00 0.00	0.18	86 95 27	0.00	1.038 1.149 1.271	6.32 7.24 8.23		5.806 6.425 7.109		33.69 36.10 38.60	32.473 35.934 39.764	78. 80. 82.	82 94 94	181.625 200.981 222.400	98. 98. 99.	75 99 20	
	0.043		0.00	0.20	78	0.02	1.407 1.556 1.722 1.906	9.29 10.43 11.66		7.607 8.706 9.633		41.19 43.85 46.59 49.40	44.001 48.690 53.879 59.621	86. 86. 88.	58 24 78	240.101 272.329 301.351 333.467	99. 99. 99. 00	55 71 83	
	0.067 0.075 0.083		0.00	0.34	77	0.46 0.76 1.13	2.109 2.334 2.583	14.38 15.88 17.48		11.796 13.053 14.444		52.26 55.14 58.03	65.975 73.006 80.787	91. 91. 92.	22 53 72	369.005 408,330 451.846	99. 99. 99. 100.	93 99 00	
	0.091		0.00	0.51	55	2.07	2.858	19,18 20.97		15.983 17.687		63.71	89.396 98.924	94. 95.	78 71	500,000	100.4	00	

MASTERSIZER

Sample Name: JW3 - Average	SOP Name:	Measured: Wednesday, April 05, 2006 2:07:30 PM				
Sample Source & type: Works = Vizon Scitec Inc- Kerrie Serben	Iple Source & type: Measured by: Analysed: ks = Vizon Scitec Inc- Kerrie Serben Vivian Wednesday, April 05, 2006 2:07:31 PM					
Particle Name: Soil Particle RI: 1.230 Dispersant Name: Water	Accessory Name: Hydro 2000S (A) Absorption: 0.5 Dispersant RI: 1.330	Analysis model:Sensitivity:General purposeNormalSize range:Obscuration:0.020to 2000.000um14.36%Weighted Residual:Result Emulation:0.632%Off				
Concentration: 0.0089 %Vol	Uniformity: Result units: 1.65 Volume					
Specific Surface Area: 1.51 m²/g	Surface Weighted Mean D[3,2]: 3.973 um	Vol. Weighted Mean D[4,3]: 21.616 um				
d(0.1): 1.554 um	d(0.5): 10.417 um	d(0.9): 50.046 um				
	Particle Size Distribution					
5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0.01 0.1	1 10 Particle Size (μm)	100 90 80 70 60 50 40 30 20 100 1000 3000				
—JW3 - Average, Wednesday, April	05, 2006 2:07:30 PM					
Size (µm) Vol Under % Size (µm) Vol Under % 0.020 0.00 0.112 0 0.022 0.00 0.124 0 0.024 0.00 0.137 0 0.027 0.00 0.152 0 0.030 0.00 0.168 0 0.033 0.00 0.186 0 0.037 0.00 0.225 0 0.041 0.00 0.227 0 0.045 0.00 0.251 0 0.050 0.00 0.278 0 0.055 0.00 0.308 0	size (µm) Vol Size (µm) Vol 1.00 0.626 2.58 3.499 1.00 0.692 3.18 3.872 1.00 0.766 3.84 4.285 1.00 0.766 3.84 4.285 1.00 0.848 4.54 4.742 1.00 1.038 6.12 5.806 1.00 1.149 6.99 6.425 1.00 1.271 7.92 7.109 1.00 1.407 8.93 7.867 1.02 1.556 10.02 8.706 1.08 1.722 11.19 9.633 1.22 1.906 12.46 10.660	Onder. % Size (µm); Vol. Under. % Size (µm); Vol. Under. % 22.36 19.572 69.27 109.466 97.17 24.42 21.658 72.18 121.132 97.67 26.60 23.966 74.96 134.041 98.10 28.89 26.520 77.59 148.326 98.46 31.29 29.346 80.06 164.133 98.76 33.78 32.473 82.35 181.625 99.01 36.37 35.934 84.44 200.981 99.22 39.05 39.764 86.35 222.400 99.40 41.83 44.001 88.07 246.101 99.55 44.70 48.690 89.61 272.329 99.68 47.66 53.879 90.99 301.351 99.77 50.70 59.621 92.22 333.467 99.83				
0.067 0.00 0.377 0 0.075 0.00 0.417 0 0.083 0.00 0.462 1 0.091 0.00 0.511 1 0.101 0.00 0.565 2	1.45 2.109 13.83 11.796 0.75 2.334 15.30 13.053 1.11 2.583 16.88 14.444 1.54 2.858 18.59 15.983 2.03 3.162 20.41 17.687	53.79 65.975 93.31 369.005 99.89 56.92 73.006 94.29 408.330 99.94 60.07 80.787 95.15 451.846 99.97 63.19 89.396 95.92 500.000 100.00 66.27 98.924 96.59 500.000 100.00				

MASTERSIZER

Sample N JW2 - Ave	ame: rage		SOP	Name:				Measur Wednes	ed: day, April 0:	5, 2006 2:00	:38 PM	
Sample S Works = V	ource & type izon Scitec Ir	e: nc- Kerrie Sei	Meas rben Vivia	sured by: n				Analyse Wednes	e d: day, April 0	5, 2006 2:00	:39 PM	
Particle N Soil Particle Ri 1.230 Dispersan Water	ame: I: It Name:		Acce Hydro Abso 0.5 Dispe 1.330	ssory Nat 2000S (A rption: ersant RI:	ne:)			Analysi General Size ran 0.020 Weighte 0.634	s model: purpose ge: to 200 cd Residual %	00.000 um	Sens Norm Obso 16.96 Resu Off	itivity: al uration: % It Emulation:
Concentra 0.0093	ation: %Vol	, ,	Span 4.956	:				Uniform 1.58	ity:		Resu Volun	It units: ne
Specific S 1.73	urface Area: m²/g		Surfa 3.459	ice Weight um	ted Mean D	[3,2]:		Vol. Weig 17.616	ghted Mean um	D[4,3]:		
d(0.1):	1.307	um			d(0.5):	8.826	5 U	im		d(0.9): 45.	046 um
					Particle S	ize C	Distribut	ion				
Volume (%)	4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.01		0.1		Partic		10 ze (um)		100			- 100 = 90 = 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 000
JW2 -	Average.	Nednesda	v. April 05, 2	2006 2:00	0:38 PM				· · · · · · · · · · · · · · · · · · ·			
JW2 -	Vol Under %	Vednesda Size (µm) 0.112	y, April 05, 2	2006 2:00 Size (µm) 0.626	U:38 PM Vol Under %		Size (µm) 3.499	Vol Under % 26.53	Size (µm) 19.572	Vol Under % 72.90	Size (µm 109.46) Vol Under % 6 98.62
0.022 0.024 0.027 0.030	0.00	0.124 0.137 0.152 0.168	0.00 0.00 0.00	0.892 0.766 0.848 0.938	4.66 5.52 6.45		4.285 4.742 5.247	31.13 33.55 36.06	23.966 26.520 29.346	78.01 80.36 82.54	134.04 134.32 148.32 164.13	2 99.11 1 99.48 6 99.74 3 99.90
0.033 0.037 0.041	0.00 0.00 0.00	0.186 0.205 0.227	0.00 0.00 0.00	1.038 1.149 1.271	7.45 8.52 9.67		5.806 6.425 7.109	38.63 41.28 43.99	32.473 35.934 39.764	84.56 86.42 88.11	181.62 200.98 222.40	5 99.97 1 100.00 0 100.00
0.045	0.00 0.00 0.00 0.00	0.251 0.278 0.308 0.341	0.00 0.03 0.11 0.28	1.407 1.556 1.722 1.906	10.90 12.23 13.65 15.17		8.706 9.633 10.660	40.77 49.61 52.51 55.46	44.001 48.690 53.879 59.621	89.66 91.07 92.36 93.54	246.10 272.32 301.35 333.46	100.00 100.00 1 100.00 7 100.00
0.067 0.075 0.083	0.00 0.00 0.00	0.377 0.417 0.462	0.56 0.91 1.35	2.109 2.334 2.583	16.80 18.53 20.37		11.796 13.053 14.444	58.44 61.43 64.40	65.975 73.006 80.787	94.62 95.61 96.51	369.00 408.33 451.84	5 100.00 0 100.00 5 100.00
0.091	0.00	0.511	1.87 2.46	2.858 3.162	22.32 24.37		15.983 17.687	67.31 70.15	89.396 98.924	97.32 98.02	500,000	100.00

MASTERSIZER *Con*

	Sample N JW4 - Ave	ame: rage		SOP	Name:			Measu Wedne	i red: esday, April 0	5, 2006 2:13	:51 PM		
,	Sample So Works = V	ource & type: izon Scitec Inc-	- Kerrie Serber	Meası N Vivlan	Measured by: Vivian				Analysed: Wednesday, April 05, 2006 2:13:52 PM				
	Particle N Soil Particle RI 1.230 Dispersan Water	ame: I: t Name:		Acces Hydro Absor 0.5 Disper 1.330	sory Nan 2000S (A) ption: rsant RI:	ne:		Analys Genera Size ra 0.020 Weight 0.625	is model: Il purpose nge: to 200 ted Residual %	00.000 um :	Sensi Norma Obscu 15.67 Resul Off	tivity: I Iration: % t Emulation:	
Concentration: 0.0096 %Vol				Span : 3.845				Unifor 1.31	nity:		Result Volum	t units: e	
	Specific S 1.53	urface Area: m²/g		Surfac 3.921	e Weight um	ed Mean D[3,2]:	Vol. We 18.136	ighted Mear um	n D[4,3]:			
	d(0.1):	1.526	um			d(0.5):	10.439	um		d(0.9): 41.6	60 um	
Ī						Particle S	ize Distribu	ition					
	Volume (%)	5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.01				Particl	10 e Size (µn)	100		000 30	100 90 80 70 60 50 40 30 20 10 00	
E	JW4 -	Average, W	ednesday, A	April 05, 2	006 2:13	:51 PM							
-	Size (µm) 0.020 0.022 0.024 0.027	Vol Under % 0.00 0.00 0.00 0.00	Size (µm) Vol 0.112 0.124 0.137 0.152	Under % 0.00 0.00 0.00 0.00	Size (µm) 0.626 0.692 0.766 0.848	Vol Under % 2.66 3.28 3.95 4.68	Size (µm) 3.499 3.872 4.285 4.742	Vol Under % 22.35 24.36 26.48 28.71	Size (µm) 19.572 21.658 23.966 26.520	Vol Under % 70.56 73.74 76.80 79.69	Size (µm) 109.466 121.132 134.041 148.326	Vol Under % 98.64 98.93 99.17 99.36	
	0.030 0.033 0.037 0.041 0.045	0.00 0.00 0.00 0.00 0.00	0.168 0.186 0.205 0.227 0.251	0.00 0.00 0.00 0.00 0.00	0.938 1.038 1.149 1.271 1.407	5.45 6.28 7.17 8.11 9.13	5.247 5.806 6.425 7.109 7.867	31.05 33.50 36.06 38.74 41.54	29.346 32.473 35.934 39.764 44.001	82.39 84.88 87.13 89.15 90.93	164.133 181.625 200.981 222.400 246.101	99.53 99.67 99.79 99.89 99.96	
	0.050 0.055 0.061 0.067 0.075	0.00 0.00 0.00 0.00	0.278 0.308 0.341 0.377 0.417	0.02 0.09 0.24 0.48 0.78	1.556 1.722 1.906 2.109 2.334	10.22 11.39 12.65 14.00	8,706 9,633 10,660 11,796	44.46 47.51 50.66 53.91 57.23	48.690 53.879 59.621 65.975 73.005	92.47 93.80 94.92 95.87	272.329 301.351 333.467 369.005	100.00 100.00 100.00 100.00	
	0.083 0.091 0.101	0.00 0.00 0.00	0.462 0.511 0.565	1.15 1.59 2.10	2.583 2.858 3.162	17.01 18.68 20.45	14.444 15.983 17.687	60.59 63.95 67.29	80.787 89.396 98.924	97.31 97.84 98.28	451.846 500.000	100.00 100.00 100.00	

MASTERSIZER

	Sample Na JW6 - Aver	ame: rage		SOP	Name:				Measur Wednes	ed: day, April 0	5, 2006 2:20	3:07 PM			
	Sample So Works = Vi	ource & type izon Scitec In	: c- Kerrie Serb	Meas en Viviar	ured by: 1				Anaiyse Wednes	e d: day, April 0	5, 2006 2:28	3:09 PM			
 	Particle Na Soil Particle RI: 1.230 Dispersant Water	ame: : t Name:		Acce Hydro Abso 0.5 Dispe 1.330	ssory Nan 2000S (A) rption: rrsant RI:	ne:)			Analysis General Size ran 0.020 Weighte 0.670	s model: purpose ge: to 200 d Residual %	00.000 ur I:	S N 0 1 R 0	ensitivity ormal bscuratio 4.17 % esult Emo	: n: .lation:	
0	Concentrat 0.0084	tion: %Vol		Span 4.658	:				Uniform 1.52	ity:		R	esult unit	s:	
	Specific Su 1.58	urface Area: m²/g		Surfa 3.794	ce Weight .um	ed Mean D[3,2]:		Vol. Weig 19.564	ghted Mear um	n D[4,3]:				
_	d(0.1):	1.452	um			d(0.5):	10.068	u	m		đ	(0.9):	48.345	um	
Ī		<i>c</i>				Particle S	ize Dis	tributio	on		·····	·····			1
	Volume (%)	4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.01) 		Particl	e Size	10 (µm)		100		1000	- 10 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 3000	0	
E	JW6 -	Average, V	Vednesday,	April 05, 2	006 2:28	:07 PM]
	0.020 0.022 0.024 0.027 0.030 0.033 0.033 0.037 0.041 0.045	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5.122 (µm) V 0.112 0.124 0.137 0.152 0.168 0.186 0.205 0.227 0.251 0.752	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Size (µm)) 0.626 0.692 0.766 0.848 0.938 1.038 1.038 1.149 1.271 1.407 1.555	voi Under;% 2.78 3.43 4.14 4.91 5.73 6.61 7.55 8.56 9.64	<u>- Size</u>	3.499 3.872 4.285 4.742 5.247 5.806 6.425 7.109 7.867 8.200	0: Under % 23.60 25.69 27.87 30.16 32.54 35.01 37.58 40.23 42.97	Size (µm) 19.572 21.658 23.966 26.520 29.346 32.473 35.934 39.764 44.001	Vol Under % 69.74 72.55 75.26 77.84 80.27 82.56 84.69 86.66 88.46	Size 109 121 134 148 164 181 200 222 246	(um) Vol 3 0.466 1.132 4.041 3.326 1.133 1.625 0.981 2.400 5.101	Inder.% 98.14 98.59 98.95 99.23 99.46 99.63 99.77 99.88 99.96	
	0.050 0.055 0.061 0.067 0.075 0.083 0.091 0.101	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.278 0.308 0.341 0.377 0.417 0.462 0.511 0.565	0.02 0.09 0.25 0.49 0.81 1.20 1.66 2.19	1.556 1.722 1.906 2.109 2.334 2.583 2.858 3.162	10.80 12.05 13.40 14.83 16.37 18.02 19.77 21.63	1 3 1 1 1 1	8.706 9.633 0.660 1.796 3.053 4.444 5.983 7.687	45.80 48.71 51.69 54.72 57.77 60.82 63.85 66.83	48.690 53.879 59.621 65.975 73.006 80.787 89.396 98.924	90.11 91.60 92.94 94.14 95.20 96.13 96.92 97.59	272 301 333 369 408 451 500	2.329 1.351 1.467 1.005 1.330 1.846 1.000	100.00 100.00 100.00 100.00 100.00 100.00 100.00	

MASTERSIZER

Sa JW	mple Nam /12 - Avera	ie: ige		SOP N	ame:			Measured: Wednesda	: y, April 05, 20	006 2:44:47 I	РМ	
Sa We	mple Sou orks = Vizo	rce & type: on Scitec Inc-	- Kerrie Sert	Measu ben Vivian	ired by:			Anaiysed: Wednesda	y, April 05, 20	006 2:44:48	PM	
Pa So Pa 1.2 Dia Wa	rticle Nan ii rticle Ri: 230 spersant Mater	ne: Name:		Acces Hydro 3 Absory 0.5 Disper 1.330	sory Name: 2000S (A) ption: rsant RI:			Analysis r General pu Size range 0.020 Weighted 0.649	nodel: rpose to 2000.0 Residual: %	000 um	Sensitivity Normal Obscuration 14.35 Result Em Off	/: on: % ulation:
C c 0.0	Concentration:Span :Uniformity:Result0.0074%Vol4.1801.61Volume						Result un Volume	its:				
Sŗ	ecific Su	rface Area:		Surfac	e Weighted	Mean D[3,2]:	16,799		[4,3].		
1.	81 	m²/g		3.300	. um	0.5): 8.2	61 un	n		d(0.9): 35.777	um
	d(0.1):	1.249			B	articlo Size	Distributio					
	Volume (%)	5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.01		0.1		Particle	10 Size (um)		100			00 00 70 50 50 40 30 20 10
ļ	14/40	A	Modposi	tay April 05	2006 2.44	47 PM	0120 (pin)	·				
ł	JW12 Size (µm)	- Average, Vol Under %	Wednes Size (µm	day, April 05	, 2006 2:44	1:47 PM	Size (µm)	Vol Under %	Size (µm) V	/al-Under % 76.31	Size (µm) V 109.466	ol Under % 98.86
	0.020	0.00	0.112	0.00	0.620	4,08	3.872	30.01	21.658	79.07	121.132	99.05
	0.022	0.00	0,137	0.00	0.766	4.93	4.285	32.41	23.966	81.66	134.041	99.18
	0.027	0.00	0.152	2 0.00	0.848	5.84	4.742	34.90	29.346	86.27	164.133	99.34
	0.030	0.00	0.16	s 0.00	1.038	7.87	5.806	40.12	32.473	88.28	181.625	99.37
	0.033	0.00	0.20	5 0.00	1.149	9.00	6.425	42.85	35.934	90.07	200.981	99.39
	0.041	0.00	0.22	7 0.00	1.271	10.21	7,109	45.67	44.001	93.05	246.101	99.45
	0.045	0.00	0.25	1 0.00	1.407	11.51	8,706	51.56	48.690	94.24	272.329	99.49
	0.050	0.00	0.27	8 0.11	1.722	14.39	9.633	54.62	53.879	95.26	301.351	99.54
	0.055	0.00	0.34	1 0.30	1.906	15.97	10.660	57.75	59.621	96.12 06.84	333.467	99.66
	0.067	0.00	0.37	7 0.59	2.109	17.67	11.796	60.93 64 11	73.006	97.43	408.330	99.73
	0.075	0.00	0.41	7 0.97	2.334	19.46	14 444	67.28	80.787	97.91	451.846	99.80
	0.083	0.00	0.46	2 1,43	2.503	21.30	15.983	70.39	89.396	98.31	500.000	99.87
	0.091	0.00	0.51	5 2.61	3.162	25.48	17.687	73.41	98.924	98.62		

)

MASTERSIZER

Sample Name: JW1 - Average	SOP Name:	Measured: Wednesday, April 05, 2006 1:	:49:53 PM
Sample Source & type: Works = Vizon Scitec Inc- Kerrie Serben	Measured by: Vivian	Analysed: Wednesday, April 05, 2006 1	:49:54 PM
Particle Name: Soil Particle RI: 1.230 Dispersant Name: Water	Accessory Name: Hydro 2000S (A) Absorption: 0.5 Dispersant RI: 1.330	Analysis model: General purpose Size range: 0.020 to 2000.000 Weighted Residual: 0.720 %	Sensitivity: Normal Obscuration: um 17.50 % Result Emulation: Off
Concentration:	Span : 4.675	Uniformity: 1.63	Result units: Volume
Specific Surface Area: 1.61 m²/g d/0.1)- 1.469 um	Surface Weighted Mean D[3,2]: 3.735 um d(0.5): 9.155 u	Vol. Weighted Mean D[4,3]: 18.918 um um	d(0.9): 44.268 um
u(u.i). 1.405 uni			
5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.01 0.1	1 10 Particle Size (µm		100 90 80 70 60 50 40 30 20 1000 3000
JW1 - Average, Wednesday, Apr	1 05, 2006 1:49:53 PM		
0.020 0.00 0.112 0.022 0.00 0.124 0.024 0.00 0.152 0.030 0.00 0.152 0.030 0.00 0.168 0.033 0.00 0.186 0.033 0.00 0.205 0.041 0.00 0.227 0.045 0.00 0.251 0.050 0.00 0.278 0.055 0.00 0.308 0.061 0.00 0.341 0.067 0.00 0.341	0.00 0.626 2.74 3.499 0.00 0.692 3.38 3.872 0.00 0.766 4.08 4.285 0.00 0.766 4.08 4.285 0.00 0.848 4.83 4.742 0.00 0.938 5.64 5.247 0.00 1.038 6.50 5.806 0.00 1.149 7.44 6.425 0.00 1.271 8.44 7.109 0.00 1.407 9.51 7.867 0.02 1.556 10.68 8.706 0.09 1.722 11.94 9.633 0.24 1.906 13.30 10.660 0.49 2.109 14.78 11.796 0.80 2.334 16.38 13.053	24.10 19.572 72 26.37 21.658 74 28.77 23.966 78 31.30 26.520 86 33.93 29.346 82 36.67 32.473 84 39.49 35.934 86 42.41 39.764 84 45.40 44.001 84 48.46 48.690 9 51.57 53.879 92 57.88 65.975 9 61.03 73.006 9	2.91 109.466 97.81 5.60 121.132 98.19 8.14 134.041 98.50 0.52 148.326 98.78 2.74 164.133 99.02 4.79 181.625 99.23 6.66 200.981 99.44 8.37 222.400 99.63 9.91 246.101 99.80 1.30 272.329 99.93 2.53 301.351 99.98 3.63 333.467 100.00 4.60 369.005 100.00 5.45 408.330 100.00
0.083 0.00 0.462 0.091 0.00 0.511 0.101 0.00 0.565	1.18 2.583 18.10 14.444 1.64 2.858 19.96 15.983 2.16 3.162 21.96 17.687	64.13 80.787 9 67.16 89.396 9 70.10 98.924 9	6.19 451.846 100.00 6.82 500.000 100.00 7.36

MASTERSIZER

-	Sample Na JW5 - Aver	ame: rage		SOP N	ame:			Measured Wednesda	i: ay, April 05,	2006 2:22:13	PM		
1	Sample So Norks = Vi	ource & type: izon Scitec Inc	- Kerrie Serbe	Measu n Vivian	red by:			Analysed Wednesda	l: ay, April 05,	2006 2:22:15	PM		
Particle Name: Soil Particle RI: 1.230 Dispersant Name: Water			Access Hydro 2 Absorn 0.5 Disper 1.330	sory Name: 2000S (A) otion: sant RI:			Analysis General pr Size rang 0.020 Weighted 0.718	Analysis model:SeGeneral purposeNoSize range:Ob0.020to 2000.000um16Weighted Residual:Re0.718%Off			vity: ation: % Emulation:		
0	Concentral 0.0095	tion: %Vol		S pa n : 6.405				Uniformit 2.59	y:		Result Volume	units:	
s 1	ipecific S u 1.65	u rface Area: m²/g		Surfac 3.634	e Weighted um	Mean D[3,2	<u>!</u>]:	Vol. Weigh 30.894	nted Mean E um	D[4,3]:			
	d(0.1):	1.3 41	um		d((0.5): 10	.372 u	m		d(0.9	3): 67.77	75 um	
ī		· · · · · · · · · · · · · · · · · · ·	,		Pa	article Size	Distrib ut	on		·····		<u>.</u>	
	Volume (%)	4 3.5 3 2.5 2 1.5 1 0.5 0.01		.1		Particle	10 Size (µm)		100			100 90 80 70 60 50 40 30 20 10 00	
Ł	JW5 -	Average, V	Vednesday,	April 05, 20	006 2:22:1	3 PM							
	Size (µm) 0.020	Vol Under % 0.00	Size (µm) Vo 0.112	0.00	Size (µm) Vo 0.626	Under % 3.08	Size (µm) 3.499	Vol-Under % 25.33	Size (µm) V 19.572	ol Under % 66.23	Size (µm) 109.466	Vol Under % 94.98	
	0.022 0.024 0.027 0.030 0.033 0.033	0.00 0.00 0.00 0.00 0.00 0.00	0.124 0.137 0.152 0.168 0.186 0.205	0.00 0.00 0.00 0.00 0.00 0.00	0.692 0.766 0.848 0.938 1.038 1.149 1.274	3.78 4.54 5.37 6.26 7.23 8.26 9.38	3.872 4.285 4.742 5.247 5.806 6.425 7.109	27.35 29.43 31.57 33.76 36.00 38.31 40.67	21.658 23.966 26.520 29.346 32.473 35.934 39.764	68.65 71.01 73.28 75.47 77.57 79.57 81.49	121.132 134.041 148.326 164.133 181.625 200.981 222.400	95.64 96.18 96.60 96.92 97.17 97.38 97.56	
	0.041 0.045 0.050 0.055 0.061 0.067 0.075	0.00 0.00 0.00 0.00 0.00 0.00	0.227 0.251 0.278 0.308 0.341 0.377 0.417	0.00 0.03 0.12 0.30 0.58 0.93	1.407 1.556 1.722 1.906 2.109 2.334	10.58 11.87 13.25 14.72 16.29 17.94	7.867 8.706 9.633 10.660 11.796 13.053	43.09 45.57 48.11 50.70 53.32 55.95	44.001 48.690 53.879 59.621 66.975 73.006	83.31 85.04 86.67 88.20 89.64 90.96	246.101 272.329 301.351 333.467 369.005 408.330	97.74 97.93 98.14 98.38 98.64 98.91	
	0.083 0.091 0.101	0.00 0.00 0.00	0.462 0.511 0.565	1.36 1.86 2.44	2.583 2.858 3.162	19.68 21.49 23.38	14.444 15.983 17.687	58.58 61.18 63.73	80.787 89.396 98.924	92.16 93.24 94.18	451.846 500.000	99. 17 99. 44	

<u> </u>			ANALYSIS REPORT	
				VIZON
DATE:	11-Apr-06			SCITEC
PROJECT No:	2-11-0965b			3650 Wesbrook Mall
				Vancouver, B.C.
APPROVED BY:	H.P. Meier			Canada
				TEL: (604) 224-4331
				FAX: (604) 224-0540
JLIENT:	Jacques Wh	itford		
CONTACT:	Janine Beck	ett		
COMMENTS:	I otal PCB's	in soils and sec	liments.	
METHODE	Soxblat avt	Letion with and	 	alvant avabance to
:	beyane Flen	nental sulfur re	moval using mercury and clean up of	ovent exchange to
<u>.</u>	Analysis by	GC/ECD.	and using mercury and clean up t	
· · · · · · · · · · · · · · · · · · ·	i i i i i i j e i e i e j			
Sample	Date	Vizon #	Total PCB's as Arocior 1254	-
<u>}</u>			ug/g drywt.	
W-1	Feb. 23/06	060223J-01	<0.03	
W-2	Feb. 23/06	060223J-02	<0.03	
Ŵ-3 (1)	Feb. 23/06	060223J-03	<0.03	
W-3 (2)	Feb. 23/06	060223J-03	<0.03	
W-4	Feb. 23/06	060223J-04	<0.03	
<u>W-5</u>	Feb. 23/06	060223J-05	<0.03	
W-6	Feb. 23/06	060223J-06	<0.03	
W-7	Feb. 23/06	060223J-07	<0.03	
W-8	Mar. 07/06	060307K-11	<0.03	
W-11 (1)	Mar. 07/06	060307K-12	0.03	
W-11 (2)	Mar. 07/06	060307K-12	0.03	
W-12	Feb. 23/06	060223J-10	<0.03	
eference Mat.			<u> </u>	
IS-2			113.2 ug/kg	
arget			111.8+/-2.5 ug/kg	
:				
amples were qua	ntified agains	st an Aroclor 12	54 standard since the PCB pattern v	was closest to this particular
roclor.				
ty	<u> </u>			
6,1	ļ			
1				

VIZON SCITEC INC.

SOLID SAMPLES

DIOXIN/FURAN ANALYSIS

AXYS METHOD: MLA-017

Contract: 2733 Data Package Identification: DPWG18861 Analysis WG18545

> Prepared for: Kerri Serben 3650 Westbrook Mall Vancouver, BC V6S 2L2 Canada

Prepared by: AXYS Analytical Services Ltd. P.O. Box 2219, 2045 Mills Rd West Sidney, British Columbia V8L 3S8 CANADA

> Contact: Kalai Pillay Project Manager

6 April 2006

VIZON SCITEC INC. SOLID SAMPLES

DIOXIN AND FURAN ANALYSIS AXYS METHOD: MLA-017 2733: L8721-1 to -10

06 April 2006

NARRATIVE

This narrative describes the analysis of ten solid samples for the determination of polychlorinated dioxins and furans using High Resolution Gas Chromatography / High Resolution Mass Spectrometry (HRGC / HRMS).

SAMPLE RECEIPT AND STORAGE

Samples were received on 8th March 2006. Details of sample conditions upon receipt are provided on the Sample Receiving Record form included in this Data Package. The samples were stored at -20°C prior to extraction and analysis.

SAMPLE PREPARATION

Samples were prepared prior to analysis, as detailed on the Sample Preparation Record forms included in this data package

ANALYSIS

Analysis procedures were in general accordance with USEPA Method 1613, Revision B as documented in AXYS document MLA-017 Rev 09. A list of modifications of USEPA method 1613B is provided following this narrative.

Samples and QC samples (a procedural blank, a known sample called an Ongoing Precision and Recovery (OPR), and a duplicate) were analyzed in analysis batch DXWG18545. The composition of the batch is shown on the Cover Page and the Batch List forms included in this Data Package.

An accurately weighed aliquot of each sample was spiked with ¹³C-labeled Dioxin/Furan surrogates and soxhlet extracted with 80:20 toluene/acetone. The sample extracts were spiked with ³⁷Cl-labeled 2,3,7,8-TCDD cleanup standard prior to chromatographic column cleanup procedures. Cleanup procedures were performed on Fluid Management Systems, Inc *'Power-PrepTM System'* using standard chromatographic clean up columns. All final extracts were reduced in volume and spiked with ¹³C-labeled recovery (internal) standards prior to instrumental analysis. Ten grams of clean sand (L6796-4 REF) was used as the matrix for the Lab Blank and OPR samples.

CALCULATION

Target analyte concentrations were determined by isotope dilution or internal standard quantification procedures using Micromass OPUSQuan software. Formulae used in the conversion of the raw chromatograms to concentration are provided in the method summary document.

Sample specific detection limits (SDL) were determined from the analysis data following the same procedures used to convert target peak responses to concentrations. In cases when the software selects unrepresentative area for detection limit calculations, the data interpretation chemist or the QA chemists made corrections; these corrections are hand noted on the quantification report pages.

Toxic Equivalency (TEQ) calculations were performed using WHO 1998 toxic equivalency factors. Target analytes that did not meet the method ion abundance ration criteria, flagged with a 'NDR', were not included in the TEQ calculations.

REPORTING CONVENTIONS

The AXYS contract number assigned for internal tracking was 2733. Samples were assigned a unique laboratory identifier L8721-XX, where X = numeral; all data reports reference this unique AXYS ID plus the client sample identifier. To assist with locating data a table correlating AXYS ID with the client sample number is included in this Data Package.

The laboratory qualifiers used are as follows:

- NDR = identifies a target that could not be confirmed by virtue of not satisfying all method required criteria, the reported value may be interpreted as an estimated maximum analyte concentration
- ND = identifies a compound that was not detected
- = identifies a compound that has been confirmed on another column

Final results are reported in concentration units of picograms per gram (pg/g) on a dry weight basis.

QA/QC NOTES

Samples and QC samples were analyzed in a single analysis batch carried intact through the entire analytical process. The sample data were reviewed and evaluated in relation to the batch QC samples.

- Sample analyte concentrations are not blank corrected and should be compared to the blank levels for significance.
- All linearity, calibration verification, OPR and labeled compound recovery specifications were met.

ANALYTICAL DISCUSSION

The analyst noted on the laboratory extraction log that a portion of the extract of the samples, JW11 & JW 12 (AXYS IDs: L8721-9 & -10) was lost during transfer. Given that all the QC parameters met the method and contract criteria, which indicated that the analysis was in a status of control, the data are not considered impacted by this variance.

Data Package

This data package is assigned a unique identifier DPWG18861, shown on the front page of this Data Package. This data package is provided in CD-ROM format. Included in this data package is the following documentation:

Sample Cover Page and Correlation Table Sample Receiving Documentation Sample Preparation Records Laboratory extraction logs for each sample Sample data reports (in order of AXYS Sample ID) Laboratory QC data reports Instrumental QC data reports (organized by analysis date) Sample raw data (in order of AXYS Sample ID) Laboratory QC raw data (Lab Blank and OPR) Instrumental QC raw data (organized by analysis date) I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, except for the conditions detailed above. In addition, I certify, that to the best of my knowledge and belief, the data as reported are true and accurate. The following signature, on behalf of AXYS Analytical Services Ltd, authorizes the release of the data contained in this data package.

Signed: Kalai Pillay, B.Sc.; Project Manager

6 APRIL 2006

Date Signed

AXYS ANALYTICAL SERVICES LTD.

ANALYSIS OF POLYCHLORINATED DIOXINS AND FURANS BY EPA METHOD 1613B

Samples are spiked with a suite of isotopically labelled surrogate standards prior to analysis, solvent extracted, and cleaned up through a series of chromatographic columns that may include gel permeation, silica, Florisil, carbon/Celite, and a lumina columns. The extract is concentrated and spiked with an isotopically labelled recovery (internal) standard. Analysis is performed using a high-resolution mass spectrometer coupled to a high-resolution gas chromatograph equipped with a DB-5 capillary chromatography column (60 m, 0.25 mm i.d., 0.1 µm film thickness). A second column, DB-225 (30 m, 0.25 mm i.d., 0.15 µm film thickness), is used for confirmation of 2,3,7,8-TCDF identification. All procedures are carried out according to protocols as described in EPA Method 1613B, with the significant modifications summarized below. The data are evaluated against QC criteria presented in Tables 1 and 2.

Method Modifications:

Section 2.1.2

Non-aqueous liquid from multiphase sample is combined with the solid phase and extracted by Dean Stark soxhlet.

Section 7.2.1

Anhydrous sodium sulphate (Na₂SO₄) is purchased in powder form (not granular) and is baked overnight prior to use. There is no solvent rinse with dichloromethane.

Section 7.10

The concentration of the labelled compound spiking solution is 100 ng/mL (except for OCDD which is 200 ng/mL) and the sample spiking volume is 20 µL. The resulting concentrations in the final extracts are as specified in the method.

Section 7.11

The concentration of the clean-up standard spiking solution is 10 ng/mL and the sample spiking volume is 20 µL. The resulting concentration in the final extracts are as specified in the method.

Sections 7.13, 14.0, 15.0

An additional lower level calibration solution, 0.2 times the concentration of CS1, is prepared and included in the initial calibration series. Initial calibration is based on a sixpoint series.

Section 7.14

The concentration of the PAR spiking solutions is 0.2/1.0/2.0 ng/mL for tetra/penta, hexa, hepta, hexa/octas respectively and the spiking volume is 1 mL. The resulting final concentration in the extracts are as specified in the method.

Section 9.3.3, Table 7

Acceptance criteria for the percent recovery of surrogate standards in samples have been revised. Criteria that are higher than 130% have been lowered to 130%, as presented in Table 1.

Section 11.5

Aqueous samples containing >1% visible solids are prepared and extracted using the same procedure as samples containing \leq 1% visible solids. This involves extracting the solids by soxhlet and the filtrate by separatory funnel extraction and combining the extract from the two phases.

Section 12.0

Samples with sufficiently low moisture content may be mixed with Na₂SO₄ and extracted using regular soxhlet apparatus in 80:20 toluene:acetone.

Section 12.4

The equilibration time for the sodium sulphate drying step is that required to produce a dry, free flowing powder (minimum thirty minutes). This may be less than the 12-hour minimum specified in EPA 1613B.

Section 12.5.1

Samples are spiked with cleanup standard right after extraction and before reduction; not spiked into the separatory funnels containing the extracts prior to the acid/base wash.

Section 12.6.1.1

Rotary evaporator baths are maintained at 35°C. Mimic proofs are collected instead of collecting proofs each day and archiving.

Section 13.0

Extracts may be cleaned up on silica, alumina and carbon chromatographic columns using a Fluid Management System (FMS) automated cleanup system.

Section 13.7

Gravimetric lipid analysis is carried out on two subsamples of the extract.

Sections 14.0, 15.0, 16.0, Table 8, Table 9

M/Z channels 354/356 and 366/368 are used to confirm and quantify the native and surrogate penta-substituted dioxins, respectively; this change from the method's specification is made in the instrument method in order to avoid a persistent interference in the 356/358 and 368/370 M/Z channels. The theoretical ratio for the P5CDD M/M+2 ions is 0.61; therefore, the acceptance range is 0.52 - 0.70.

Section 15.3.5, Table 6

Acceptance criteria for calibration verification concentrations have been modified, as presented in Table 1, so that ranges do not exceed 70-130% of the test concentration.

Section 15.5.3 Table 6

Acceptance specifications for OPR concentrations have been modified, as presented in Table 1, so that ranges do not exceed 70-130%.

Section 17.0

Conci - the concentrations of target analytes, and the labelled compound concentrations and recoveries, are calculated using the equations below. These procedures are equivalent to those described in the method but are more direct.

$$Conc_{i} = \frac{A_{i}}{A_{si}} \times \frac{M_{si}}{RRF_{i,si}} \times \frac{1}{M_{x}}$$

where A_i = summed a reas of the primary and secondary m/z's for the analyte peak of interest (compound *i*)

A_{si} = summed areas of the primary and secondary m/z's for the labelled surrogate peak used to quantify *i*)

 M_{\star} = mass of sample taken for analysis

M_{si} = mass of labelled surrogate (compound si) added to sample as calculated by the concentration of standard spiked (pg/mL) multiplied by the volume spiked (mL)

 $RRF_{i,si}$ = mean relative response factor of *i* to *si* from the five-point calibration range and defined individually as:

$$\frac{A_i}{A_{si}} \times \frac{M_{si}}{M_i}$$

Calculation of Surrogate Standard Concentrations and Percent Recoveries: Concentrations of surrogate standards are calculated using the following equation:

$$Conc_{si} = \frac{A_{si}}{A_{rs}} \times \frac{M_{rs}}{RRF_{si,rs}}$$

and, the percent recoveries of the surrogate standards are calculated using the following equation:

$$\% \text{Re cov} ery = \frac{A_{si}}{A_{rs}} \times \frac{M_{rs}}{RRF_{sl,rs}} \times \frac{1}{M_{si}} \times 100$$

where A_{rs} and $A_{s'}$ are the summed peak areas (from the primary and secondary m/z channels) of recovery standard and labelled surrogate added to the sample;

 M_{rs} and M_{si} are the masses of recovery standard and labelled surrogate added to the sample, and;

 $RRF_{si,rs}$ is the mean relative response factor of the labelled surrogate to the recovery standard as determined by the five-point calibration range and defined individually as:

$$\frac{A_{sl}}{A_{rs}} \times \frac{M_{rs}}{M_{si}}$$

Section 17.5

Extracts may be diluted with solvent and re-analyzed by GC/MS isotope-dilution to bring the instrumental response to within the linear range of the instrument. For very highlevel samples where a smaller sample aliquot may not be representative, extracts may be diluted and re-spiked with labelled quantification standards and re-analyzed by GC/MS to bring the instrumental response analytes within range. Final results may be recovery corrected using the mean recovery of labelled quantification standards.

MSU-018 Rev. 5, 07-Jun-2005

AXYS ANALYTICAL SERVICES LTD.

Table 1. QC Acceptance Criteria for PCDD/F in CAL/VER, IPR, OPR and Test Samples¹

	Test Conc ng/mL	IPR ²		OPR ³ (%)	I-CAL %	CAL/VER ⁴ (%)	Labelleo %Rec. in	l Cmpd Sample
	Ū	RSD (%)	X(%)	<u></u>			Warning Limit	Control Limit
Native Compound								
2,3,7,8-TCDD	10	28	83-129	70-130	20	78-129		-
2,3,7,8-TCDF	10	20	87-137	75-130	20	84-120	-	-
1,2,3,7,8-PeCDD	50	15	76-132	70-130	20	78-130	-	-
1,2,3,7,8-PeCDF	50	15	86-124	80-130	20	82-120	-	-
2,3,4,7,8-PeCDF	50	17	72-150	70-130	20	82-122	-	-
1,2,3,4,7,8-HxCDD	50	19	78-152	70-130	20	78-128	-	-
1,2,3,6,7,8-HxCDD	50	15	84-124	76-130	20	78-128	-	-
1,2,3,7,8,9-HXCDD	50	22	74-142	70-130	35	82-122	-	-
1,2,3,4,7,8-HxCDF	50	17	82-108	72-130	20	90-112	-	-
1,2,3,6,7,8-HxCDF	50	13	92-120	84-130	20	88-114	-	
1,2,3,7,8,9-HxCDF	50	13	84-122	78-130	20	90-112	~	-
2,3,4,6,7,8-HxCDF	50	15	74-158	70-130	20	88-114	-	-
1,2,3,4,6,7,8-HpCDD	50	15	76-130	70-130	20	86-116	-	-
1,2,3,4,6,7,8-HpCDF	50	13	90-112	82-122	20	90-110	-	_
1,2,3,4,7,8,9-HpCDF	50	16	86-126	78-130	20	86-116	-	
OCDD	100	19	86-126	78-130	20	79-126	-	-
OCDF	100	27	74-146	70-130	35	70-130	-	-
Surrogate Standards								
¹³ C ₁₂ -2,3,7,8-TCDD	100	37	28-134	25-130	35	82-121	40-120	25-130
¹³ C ₁₂ -2,3,7,8-TCDF	100	35	31-113	25-130	35	71-130	40-120	24-130
¹³ C ₁₂ -1,2,3,7,8-PeCDD	100	39	27-184	25-150	35	70-130	40-120	25-130
¹³ C ₁₂ -1,2,3,7,8-PeCDF	100	34	27-156	25-130	35	76-130	40-120	24-130
¹³ C ₁₂ -2,3,4,7,8-PeCDF	100	38	16-279	25-130	35	77-130	40-120	21-130
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	100	41	29-147	25-130	35	85-117	40-120	32-130
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	100	38	34-122	25-130	35	85-118	40-120	28-130
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	100	43	27-152	25-130	35	76-130	40-120	26-130
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	100	35	30-122	25-130	35	70-130	40-120	26-123
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	100	40	24-157	25-130	35	74-130	40-120	29-130
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	100	37	29-136	25-130	35	73-130	40-120	28-130
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	100	35	34-129	25-130	35	72-130	40-120	23-130
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	100	41	32-110	25-130	35	78-129	40-120	28-130
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	100	40	28-141	25-130	35	77-129	40-120	26-130
¹³ C ₁₂ -OCDD	200	48	20-138	25-130	35	70-130	25-120	17-130
Cleanup Standard	· · ·				<u> </u>		<u> </u>	
³⁷ Cl ₄ -2,3,7,8-TCDD	10	36	39-154	31-130	35	79-127	40-120	35-130

¹ QC acceptance criteria for IPR, OPR, and samples based on a 20 µL extract final volume ² IPR: Initial Precision and Recovery demonstration

)

³ OPR: Ongoing Precision and Recovery test run with every batch of samples.

⁴ CAL VER: Calibration Verification test run at least every 12 hours

AXYS ANALYTICAL SERVICES LTD.

QC Parameter	Specification
Analysis Duplicate	Must agree to within $\pm 20\%$ of the mean (applicable to concentrations >10 times the DL) ¹
Procedural Blank	Blood: TCDD/F <0.2 pg/sample, PeCDD/F <0.5 pg/sample, HxCDD/F and HpCDD/F <1.0 pg/ sample, OCDD/F<5 pg/sample Other Matrices: TCDD/F <0.5 pg/sample, PeCDD/F, HxCDD/F, HpCDD/F <1.0 pg/sample, OCDD/F <5 pg/sample Higher levels acceptable where all sample concentrations a >10X the blank
Detection Limit	SDL Requirements Blood: Tetra-penta-CDD/F 0.2 pg/sample Hexa-octa-CDD/F 0.5 pg/sample Other Matrices: 1 pg/sample
Instrument Carryover: Toluene Blank Samples	A. 1^{st} toluene blank following CAL-VER must have <0.6 pg TCDD and <19 pg OCDD B. 2^{nd} toluene blank following CAL-VER must have <0.2 pg TCDD and <3 pg OCDD <10% contribution from preceding sample (based on observed instrument carryover rate)
Analyte/Surrogate Ratios	Response must be within the calibrated range of the instrument. Coders may use data from more than one chromatogram to get the responses in the calibrated range.
Ion Ratios	Must be within ±15% of theoretical
Sensitivity	S:N≥10:1 for all compounds for 0.1 pg/µL (CS-0.2), plus For bloods: S:N≥3:1 for 0.025 pg/µL 2,3,7,8-T4CDD

Table 2. QC Specifications for QC Samples, Instrumental Analysis, and AnalyteQuantification

¹ Duplicate criterion is a guideline; final assessment depends upon sample characteristics, overall batch QC and ongoing lab performance.

MSU-018 Rev. 5, 07-Jun-2005

)

VIZON SCITEC INC.

COVER PAGE AND CORRELATION TABLE

DIOXIN/FURAN ANALYSIS

Contract No: 2733	
AXYS Method: MLA-017	
Program: Solid Samples	
•	Contract No: 2733 AXYS Method: MLA-017 Program: Solid Samples

Client Sample No.	Lab Sample ID
LAB BLANK	WG18545-101
OPR	WG18545-102
JW1	L8721-1
JW2	L8721-2
JW3	L8721-3
JW4	L8721-4 WG18545-103 Duplicate
JW5	L8721-5
JW6	L8721-6
JW7	L8721-7
JW8	L8721-8
JW11	L8721-9
JW12	L8721-10

Dioxins and Furans Analysis of Marine Sediment

120

4

э

JW5	L8721-5	WG18545	10.9 g (dry)	pg/g (dry weight basis)	0.21	1.63	< 0.12	13.1	5.98	14.2	43	0.37	NDR 0.12	0.15	NDR 0.15	NDR 0.09	< 0.03	0.1	1.37	0.1	2.57	2.28	13.3	95.3	33.6	2.58	1.58	1.08	3.62	50.9	0.12	4.01	4.02
JW4	L8721-4 (A)	WG18545	10.9 g (dry)	pg/g (dry weight basis)	0.14	1.03	< 0.12	9.27	4.37	12	48.9	0.32	NDR 0.06	NDR 0.13	0.19	0.11	< 0.03	0.08	1.37	NDR 0.11	2.92	1.33	8.46	68.7	30	2.52	1.36	2.01	3.68	49.7	0.14	2.72	2.74
JW3	L8721-3	WG18545	10.4 g (dry)	pg/g (dry weight basis)	0.15	1.28	0.2	12.3	5,44	14.2	53.8	0.32	0.08	NDR 0.18	NDR 0.15	0.09	< 0.03	0.12	1.35	0.14	2.76	1.78	10.6	87.7	34.5	2.82	1.61	1.79	3.59	53.8	0.2	3.43	3.44
JW2	L8721-2	WG18545	10.7 g (dry)	pg/g (dry weight basis)	0.17	1.7	< 0.16	14.6	6.46	15.4	51.8	0.35	0.08	0.13	0.13	NDR 0.08	< 0.03	NDR 0.11	1.35	0.15	2.43	2,19	13.2	103	35.1	2.98	1.71	1.7	3.69	53.4	0.15	4.25	4.26
JW12	L8721-10	WG18545	10.4 g (dry)	pg/g (dry weight basis)	NDR 0.17	1.25	0.19	11.8	5.28	12.9	45.5	0.3	NDR 0.08	NDR 0.11	NDR 0.13	NDR 0.08	< 0.02	NDR 0.11	1.22	NDR 0.09	2.49	1.91	10.6	85.6	29.5	2.82	1.3	0.54	3.13	55.1	0.14	3.14	3.16
JW1	L8721-1	WG18545	10.7 g (dry)	pg/g (dry weight basis)	0.15	1.32	< 0.08	11.5	5.25	14.8	63.3	0.38	0.09	0.14	0.18	0.14	0.04	0.1	1.54	0.14	3.87	2.06	9.52	82.9	38.3	2.72	1.79	2.05	4.59	52.6	NDR 0.17	3.44	3.44
CLIENT ID	AXYS ID	WORKGHOUP	Sample Size	UNITS	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,6,7,8-HxCDD	1,2,3,7,8,9-HxCDD	1,2,3,4,6,7,8-HpCDD	OCDD	2,3,7,8-TCDF	1,2,3,7,8-PeCDF	2,3,4,7,8-PeCDF	1,2,3,4,7,8-HxCDF	1,2,3,6,7,8-HxCDF	1,2,3,7,8,9-HxCDF	2,3,4,6,7,8-HxCDF	1,2,3,4,6,7,8-HpCDF	1,2,3,4,7,8,9-HpCDF	OCDF	Total Tetra-Dioxins	Total Penta-Dioxins	Total Hexa-Dioxins	Total Hepta-Dioxins	Total Tetra-Furans	Total Penta-Furans	Total Hexa-Furans	Total Hepta-Furans	% Moisture	2,3,7,8-TCDF (C)	TEQ (WHO 1998) ND=0	TEQ (WHO 1998) ND=1/2DL

Page 1 of 2

	arine Sediment
)	Analysis of M
	d Furans /
	Dioxins an

)

JW4 (Duplicate)	WG18545-103 (DUP L8721-4)	WG18545	10.2 g (dry)	pg/g (dry weight basis)	NDR 0.11	0.95	< 0.15	9.14	4.33	12.5	51.6	0.3	0.1	0.09	NDR 0.06	0.11	< 0.02	0.1	1.41	0.11	3.13	1.17	8.29	67	30.6	2.3	1.11	1.62	3.89	52.5	0.11	2.52	2.54
Spiked Matrix	WG18545-102	WG18545		% Recov	95.5	95.7	94,4	96.3	100	92.5	96.8	98.6	96.1	95.3	94.4	96.7	97.4	95.2	99.1	94.5	85.6												
Lab Blank	WG18545-101	WG18545	10.0 g	b∂/gq	NDR 0.03	0.06	0.07	NDR 0.05	NDR 0.10	NDR 0.19	0.51	0.03	0.05	0.07	NDR 0.05	0.06	NDR 0.08	NDR 0.06	0.1	NDR 0.05	NDR 0.16	< 0.02	0.06	0.07	0.11	0.03	0.18	0.06	0.1		0.02	0.114	0.129
JW11	L8721-9	WG18545	10.7 g (dry)	pg/g (dry weight basis)	NDR 0.12	1.14	0.17	10.7	4.76	13.3	49.7	0.29	0.07	0.12	0.1	NDR 0.09	< 0.02	NDR 0.09	1.18	0.08	2.5	1.11	8.88	75.8	33.2	2.4	1.21	1.75	3.35	53.5	NDR 0.13	2.93	2.94
JWB	L8721-8	WG18545	11.3 g (dry)	pg/g (dry weight basis)	0.2	1.73	0.23	15	6.7	18.1	60.7	0.3	NDR 0.08	NDR 0.11	NDR 0.11	0.1	< 0.02	0.1	1.32	NDR 0.10	2.8	2.18	14.3	111	45.6	2.29	0.72	1.92	3.59	52.9	0.11	4.35	4.36
7WL	L8721-7	WG18545	10.6 g (dry)	pg/g (dry weight basis)	0.17	1.4	0.19	12.7	5.42	16.5	82.4	0.32	NDR 0.08	0.15	NDR 0.17	NDR 0.10	NDR 0.02	0.09	1.33	NDR 0.08	2.77	1.69	5 2	87.1	47.6	2.56	1.28	1.51	3.8	55	NDR 0.11	3.67	3.68
JWG	L8721-6	WG18545	10.9 g (dry)	pg/g (dry weight basis)	NDR 0.13	0.95	0.13	8.05	3.82	10.1	37.2	0.25	NDR 0.06	0.12	NDR 0.12	0.09	NDR 0.02	NDR 0.08	0.98	NDR 0.09	1.81	0.53	8.23	58.7	23.3	1.87	1.27	1.44	2.64	51.6	NDR 0.10	2.33	2.35

Page 2 of 2

Dioxins and Furans Analysis in Marine Sediment

See below for definitions of possible flags and labels in the database (sheet tab 'GenericEDD')

peak detected but did not meet quantification criteria number following this flag represents an unconfirmed concentration	less than the detection limit number following this symbol represents the detection limit	For homologue totals sums, please see the individual congener data for the detection limit.
11	11	
NDR	v	

OLR = exceeds calibrated linear range, see dilution data

.....

Apr 18, 17:00 PST by: LINKS AutoFax

(18:00) Pg 1 of 6

CanTest Ltd.

Professional Analytical Services

4606 Canada Way Burnaby, BC VSG 1K5

Fax: 604 731 2386

Tel: 604 734 7276

1 800 665 8566

Date: April 18, 2006 To: Vizon SciTec Inc. Att'n: K. Serben From: LINKS Automatic Fax Subject: Analytical results for Group# 70329082

MESSAGE:

The analytical results on these pages are being sent to you via the CANTEST Laboratory Information News and Knowledge System (LINKS) "AutoFax" service. This transmission includes data submitted under the following project information:

> CANTEST Group# 70329082 Project Name: JW Project Number: 2-11-0965B Submission Date: March 28, 2006 Matrix: Soil

This is a final report. A signed report and invoice will be sent by courier or mail.

Thank you for considering CANTEST for your analytical needs. Please feel free to contact a Technical Service Representative at (604) 734-7276 (1-800-665-8566) should you have any questions about the LINKS "AutoFax" or any other CANTEST services.

Another great service available only at CANTEST, LINKS AutoEmail compiles and transmits all your analytical data the moment your project has been completed!

Call today to set up your FREE AutoEmail account!

NOTE: This message is intended only for the use of the individual or entity to which it is addressed and contains information that is confidential. If the reader of this message is not the intended recipient, or the agent responsible for delivering the message to the intended recipient, your are hereby notified that any disclosure or distribution of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone and return the original to us at the above address by mail without making a copy. Thank you.

(18:01) Pg 2 of 6

REPORTED TO: Vizon SciTec Inc.

REPORT DATE: April 18, 2006

GROUP NUMBER: 70329082

Conventional Parameters in Soil

CLIENT SAMPLE	SAMPLE	CANTEST	Moisture
IDENTIFICATION:	DATE	ID	
JW1 060307K-01	Mar 7/06	603290296	50.6
JW2 060307K-02	Mar 7/06	603290297	44.0
JW3 060307K-03	Mar 7/06	603290298	49.3
JW4 060307K-04	Mar 7/06	603290299	48,4
JW5 060307K-05	Mar 7/06	603290300	54.9
JW6 060307K-06	Mar 7/06	603290301	51.7
JW7 060307K-07	Mar 7/06	603290302	53.4
JW9 060307K-08	Mar 7/06	603290303	30.9
JW10 060307K-09	Mar 7/06	603290304	46.3
JW12 060307K-10	Mar 7/06	603290305	43.6
DETECTION LIMIT			0.1
UNITS			%

% = percent

(18:01) Pg 3 of 6

CANTEST

REPORTED TO: Vizon SciTec Inc.

REPORT DATE: April 18, 2006

GROUP NUMBER: 70329082

Simultaneously Extracted Metals-reported in micromoles- in Soil

CLIENT SAMPLE	: 1:	JW1 060307K-01	JW2 060307K-02	JW3 060307K-03	JW4 060307K-04	
DATE SAMPLED:	:	Mar 7/06	Mar 7/06	Mar 7/06	Mar 7/06	
CANTEST ID:		603290296	603290297	603290298	603290299	LIMIT
Acid Volatile Sulp Cadmium	ohide Cd	1.3	0.4	0.3	0.3	0.2
Copper	Cu	0.10	<	<	<	0.0009
Mercury	Hg	<	< <	< <	< <	0.005 0.000005
Nickel Zinc	Ni Zn	0.045 0.21	0.010	0.010 0.049	0.012	0.009 0.006

Results expressed as micromoles per gram (dry wt.) (umoles/gram)

< = Less than detection limit

(18:01) Pg 4 of 6

REPORTED TO: Vizon SciTec Inc.

REPORT DATE: April 18, 2006

GROUP NUMBER: 70329082

Simultaneously Extracted Metals-reported in micromoles- in Soil

CLIENT SAMPLE	:	JW5 060307K-05	JW6 060307K-06	JW7 060307K-07	JW9 060307K-08	
DATE SAMPLED:		Mar 7/06	Mar 7/06	Mar 7/06	Mar 7/06	
CANTEST ID:		603290300	603290301	603290302	603290303	LIMIT
Acid Volatile Sulp	hide	1.8	0.7	0.4	<	0.2
Cadmium	Cd	<	<pre>`<</pre>	<	<	0.0009
Copper	Cu	<	<	<	<	0.006
Lead	Pb	<	<	0.005	<	0.005
Mercury	Hg	0.000009	<	<	<	0.000005
Nickel	Ni	0.014	<	0.010	0.024	0.009
Zinc	Zn	0.050	0.030	0.078	0.091	0.006

Results expressed as micromoles per gram (dry wt.) (umoles/gram)

< = Less than detection limit

(18:02) Pg 5 of 6

CANTEST

REPORTED TO: Vizon SciTec Inc.

REPORT DATE: April 18, 2006

GROUP NUMBER: 70329082

Simultaneously Extracted Metals-reported in micromoles- in Soil

CLIENT SAMPLE IDENTIFICATION:	<u>к т.</u>	JW10 060307K-09	JW12 060307K-10	
DATE SAMPLED:		Mar 7/06	Mar 7/06	DETECTION
CANTEST ID:		603290304	603290305	LIMIT
Acid Volatile Sulphide Cadmium Copper Lead Mercury	Cd Cu Pb Hg	0.7 < 0.009 < <	0.9 < < < <	0.2 0.0009 0.006 0.005 0.000005
Nickel Zinc	Ni Zn	0.029 0.11	0.020 0.092	0.009 0.006

Results expressed as micromoles per gram (dry wt.) (umoles/gram) < = Less than detection limit

Page 5

(18:02) Pg 6 of 6

Analysis Report

REPORT ON: Analysis of Soil Samples

REPORTED TO: Vizon SciTec Inc. (FKA BC Research Inc.) 3650 Wesbrook Mall Vancouver, BC V6S 2L2

Att'n: K. Serben

CHAIN OF CUSTODY: 101048 PROJECT NAME: JW PROJECT NUMBER: 2-11-0965B P.O. NUMBER: V2339

NUMBER OF SAMPLES: 10

DATE SUBMITTED: March 28, 2006

SAMPLE TYPE: Soil

NOTE: Results contained in this report refer only to the testing of samples as submitted. Other information is available on request.

TEST METHODS:

Simultaneously Extractable Metals - analysis was performed using inductively Coupled Plasma Spectroscopy (ICP), Inductively Coupled Plasma Mass Spectroscopy (ICP/MS) or by other techniques as described.

Acid Volatile Sulphide/Simultaneously Extractable Metals - analysis was performed using procedures based on "Determination of Acid Volatile Sulfide and Selected Simultaneously Extractable Metals in Sediment", U.S. EPA Draft Analytical Method, December 1991. Sulphides in the sample are volatilized by acidification, then trapped in aqueous solution, and measured using gravimetric analysis. The Simultaneously Extractable Metals, liberated from the sample during acidification, are determined using the analysis techniques described.

Mercury - analysis was performed using Cold Vapour Atomic Absorption Spectrophotometry.

Arsenic, antimony, cadmium, lead, selenium - analysis was performed using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS).

Moisture in Soil - analysis was performed gravimetrically by heating a separate sample portion at 105 C and measuring the weight loss.

TEST RESULTS:

(See following pages)

CANTEST LTD.

Greg Sparrow, B.Sc. Senior Analyst A Member of the CANAM Group www.testing-labs.com

Page 1 of 5

CANTEST LTD

Professional Analytical Services

4606 Canada Way Burnaby, B.C. VSG 1KS

FAX: 604 731 2386

TEL: 604 734 7276

1 800 665 8566

REPORT DATE: April 18, 2006

GROUP NUMBER: 70329082

LABORATORY RECORD BOOK

PAGE NUMBER:

145977

INVE

Project #: 2-11-0965B Company: Jacques Whitford Contact: Janine Beckett

	1	Samala	NL		
DOD #	Comple	Data		S ma/l	
BCR #	Sample	Date	ing tyre	ing/L	
060223J-43	Porewater JW1	23-Feb-2006	1.25	<u> </u>	· · · · · · · · · · · · · · · · · · ·
060223J-44	Porewater JW2	23-Feb-2006	2.17		
060223J-45	Porewater JW3	23-Feb-2006	1.88		
060223J-46	Porewater JW4	23-Feb-2006	1.18/1.19		
060223J-47	Porewater JW5	23-Feb-2006	0 964		·····
060223J-48	Porewater JW6	23-Feb-2006	0.946		
060223J-49	Porewater JW7	23-Feb-2006	1.87	—	
060223J-50	Porewater JW9	23-Feb-2006	0.632	_	
060223J-51	Porewater JW10	23-Feb-2006	1.43		
060223J-52	Porewater JW12	23-Feb-2006	1.06		
060223J-53	Porewater Control D	23-Feb-2006	0.027		
060223J-54	Porewater Control M	23-Feb-2006	60.01	—	
060223J-55	Porewater JW1	23-Feb-2006		0.253	
060223J-56	Porewater JW2	23-Feb-2006		50.2	
060223J-57	Porewater JW3	23-Feb-2006	—	0.500	
060223J-58	Porewater JW4	23-Feb-2006		50,2	
060223J-59	Porewater JW5	23-Feb-2006	—	50.2	
060223J-60	Porewater JW6	23-Feb-2006		<0.Z	
060223J-61	Porewater JW7	23-Feb-2006		50.2	
060223J-62	Porewater JW9	23-Feb-2006		0.258	
060223J-63	Porewater JW10	23-Feb-2006		50.2	
060223J-64	Porewater JW12	23-Feb-2006		50.2	
060223J-65	Porewater Control D	23-Feb-2006		50,2	
060223J-66	Porewater Control M	23-Feb-2006		<0.2	
Data Analyzad		 			
Date Analyzed:			FRO. 24/06	Mar. 9106	
				<u> </u>	
				ļ	
		· · · · · · · · · · · · · · · · · · ·	0.103		
rouna			0.098		

A6

き

5330 / 5331

Test Methods:

Initials

Vizon SciTec Vancouver, BC	<i>Neanthes</i> Sediment Test Porewater Measurements	
Client # & Name: <u>#128</u>	Jagues Whitford Start Date: 06-Feb-24	
Date Measured: 06	F-eb 23 /24 Start Time: 14:30	

Sample ID	Salinity (‰)	Temperature (°C)	На	NH₃ & Sulfide Sample Taken	Analyst
JWI	27	20.0	7.6		15
JW2	25	20.2	7.7		LS
JW3	27	20.2	7.7	V	LS
JW4	25	20.2	7.7	~	LS
JW5	26	20.4	7.6		LS
JW6	25	20.0	7.6	\checkmark	LS
JWJ	25	20.0	7.5	~	LS
JW9	26	20.0	7.5	_	15
JWIO	25	19.8	7.3		LS
JW12	25	19.9	7.3		LS
ControlM	25	18.5	7.9		KS
Control D	25	18.5	7.9		KS
1					

Comments used Daphnia neters

Vizon SciTec, Inc. Vancouver, BC

ē
Ť
š
2
Ĕ
Š
<u>μ</u>
3
<u>o</u>
ъ
¢۵.
F
按
ž
Ë
Ξ.
ΰ
Q
S
Φ
Ć
1
Ø
2
77
ž
0
Ξ
Ē
Σ
្លុល្ណ
E
H
ŏ
ō
7
2
<u>_</u>
10
ž
3
៊ី
لە
α
C C
12
5
ž
5
Ľ
τ
ā
<u>.</u> N
Ē
C
Ē
5
-
2
2
2
\overline{c}
F

Sample Name Salinity (‰) pH JW1 27 7.6 JW2 25 7.7 JW3 27 7.7 JW4 25 7.7 JW4 25 7.7 JW3 27 7.7 JW4 25 7.7 JW5 26 7.7	Hd				
JW1 27 7.6 JW2 25 7.7 JW3 27 7.7 JW4 25 7.7 JW5 26 7.6		(°C)	(mg N/L)	Ammonia ^{ab}	(mg N/L)
JW2 25 7.7 JW3 27 7.7 JW4 25 7.7 JW5 26 7.6	7.6	20.0	1.25	1.30	0.016
JW3 27 7.7 JW4 25 7.7 JW5 26 7.6	7.7	20.2	2.17	1.63	0.035
JW4 25 7.7 JW5 26 7.6	7.7	20.2	1.88	1.63	0.031
JW5 26 7.6	7.7	20.2	1 19	1.63	0.019
	7.6	20.4	0.96	1.30	0.013
JW6 25 7.6	7.6	20.0	0.95	1.30	0.012
JW7 25 7.5	7.5	20.0	1.87	1.03	0.019
JW9 26 7.5	7.5	20.0	0.63	1.03	0.007
JW10 25 7.3	7.3	19.8	1.43	1.03	0.015
JW12 25 7.3	7.3	19.9	1.06	1.03	0.011

^a Values from Bower CE and Bidwell, JP. 1978. Ionization of Ammonia in Seawater: Effects of Temperature, pH and Salinity. Journal of Fisheries Research Board of Canada 35:1012-1016

^b When a %unionized ammonia value is not available for a certain pH (e.g., pH<7.5) or salinity, the value closest to the pH or salinity is used.

Page 1 of 1

10-D SURVIVAL TEST WITH EOHAUSTORIUS ESTUARIUS

This section of the report contains a summary table of the test conditions (Table 3). Copies of the benchsheets (raw data) are inserted after the above table.

· · · · · · · · · · · · · · · · · · ·	
Client Name/Location	Jacques Whitford Ltd. / Burnaby, BC
Testing Lab/Location	Vizon SciTec Inc. / Vancouver, BC
Sample Information	
Sample Names	JW1 to JW7, JW9, JW10, and JW12
Type of Sample	Field collected sediments
Method of Collection	See "Toxicity Test Request" sheet or "Chain of Custody" form
Sample Collector	See "Toxicity Test Request" sheet or "Chain of Custody" form
Sample Volume	8L
Sample Containers	8-L white food grade plastic buckets
Information on Labelling/Coding	See "Toxicity Test Request" sheet or "Chain of Custody" form
Sample Collection Date (dd-mm-yr)	3-Feb-06 to 7-Feb-06
Sample Temperature upon Arrival	8.4 – 15.6°C
Date (dd-mm-yr) & Time of Sample Receipt at Lab	9-Feb-06 @ 15:14 PM
Date Test Started and Ended (dd-mm-yr)	24-Feb-06 and 06-Mar-06
Storage Conditions	From receipt to test initiation, the samples were stored in a cold room that was at $4 \pm 2^{\circ}$ C
Sediment and Pore Water Characterisation	See "Sediment Sample Descriptions" in Sample Information section and analytical reports, benchsheets in Sediment Characterisation section
Sample Preparation	
Homogenisation	Samples (including the separated liquid) were individually mixed until homogenised at ambient laboratory temperature; if necessary, debris and indigenous macro-organisms were removed during homogenisation (see "Sediment Sample Descriptions" sheet)
Date of Homogenisation	23-Feb-06
Characterisation	In Sediment Characterisation section
Test Organisms	
Species	Eohaustorius estuarius
Source	Mackenzie Beach, Tofino, BC from same population; as collected by Doug Swanston, Seacology, North Vancouver, BC.
Date of Collection (dd-mm-yr)	20-Feb-06
Method of Organism Collection	All containers, sieves, pipettes and items that contacted the amphipods were cleaned by scrubbing with sand and rinsing with seawater prior to use. Seawater used in the sieving and storage of amphipods was collected adjacent to the amphipod collection site. The seawater was sieved to removed debris and unwanted organisms. A refractometer was
	used to determine the salinity of the seawater (30‰). Large debris and

Table 3 Test Summary Checklist – 10-d Survival Test with Echaustorius estuarius
Toxicity and Chemical Testing on Marine Seawater and Sediment Samples for the Gateway Environmental Management (GEM) Marine Project Sampling Period: February 2006

· · · ·	
	undesired amphipod species and other visible organisms were removed as observed during sieving. Approximately 100 mL of sieved seawater (28‰) was added to each container. Amphipods were drawn into a pipette and counted into clean containers (110/container) from the sieve. Each container was inspected for debris and unwanted organisms. Approximately 200 mL of clean sieved sand was then added to each container. A clean lid was loosely fitted and the container was placed in a cooler. Amphipods were stored in a locked vehicle or in the possession of a Seacology employee at all times prior to delivery at Vizon.
Age at Start of Test	3 to 5 mm juveniles
Date of Organism Arrival (dd-mm-yr)	22-Feb-06
Holding and Acclimation Conditions	See "Acclimation and Holding Conditions" sheets.
% Emerged during Holding Period	See "Acclimation and Holding Conditions" sheets.
Average Total Body Length (mean \pm	3.5 ± 0.5 ; 20 amphipods were measured. See "Length Measurements"
SD, sample size)	sheet.
Test Conditions & Apparatus	
Personnel	Pam Sinclair, Kerrie Serben, Glenn Lunty, Jackie Danisek, Jeremy
	Keating, Leslie-Anne Stavroff, Nigel May, Tam Vo, Janet Pickard
Description of Lighting and	24 hour light with incandescent lighting; heating / air-conditioning units
Temperature Regulation Systems	operating to provide appropriate temperature.
Test Vessels and Lids	1 L glass jars with ~ 8 cm inner diameter; covered.
Cleaning and Rinsing Procedures	All glassware was washed with detergent, rinsed with deionised water, soaked in an acid bath for a minimum of three hours and rinsed with
· · · ·	deionised water prior to use.
Aeration System	Filtered air through 0.5 mm (ID) / 1.5 mm (OD) Tygon flexible microbore airline tubing
Control Sediment and Test Water	
Control Sediment Source	Mackenzie Beach, Tofino, BC; as collected by Doug Swanston, Seacology, North Vancouver, BC.
Control Sediment Collection Procedure	Sediment was sieved (1 mm) before use with control/dilution seawater.
Control Sediment Storage	From receipt to test initiation, the samples were stored in a cold room that was at $4 \pm 2^{\circ}$ C
Overlying Water	Uncontaminated sand-filtered seawater obtained from the Vancouver
	Aquarium, Vancouver, BC. The seawater was pumped from Burrard
	Inlet from a depth of 40-45 feet and filtered through a gravity sand filter,
	with sand mesh size 22. After filtration, the seawater was held in a
	concrete reservoir (retention time approximately 4 h) before passing
	the tests
Time and Quantity of Chaminals	Ine tests.
Added to Water	No chemicals were added to the water.
Aqued to water	

······································	
Pre-treatment of Overlying Water	The seawater was continuously aerated prior to use.
Test Methods	
Test Method	Environment Canada (1992 and 1998 amendments). Biological Test Method: Acute Test for Sediment Toxicity Using Marine or Estuarine Amphipods, EPS 1/RM/26 and Environment Canada (1998). Biological Test Method: Reference Method for Determining Acute Lethality of Sediment to Marine or Estuarine
	Amphipods, EPS 1/RM/35.
Test Type / Duration	10-d whole sediment toxicity test with no water renewal
Test Temperature	Water temperature ranged from 13.3°C to 15.2°C over the exposure period.
Lighting	Overhead full spectrum (fluorescent or equivalent); 500 – 1000 lux, 24 h light
Aeration	Continuous and minimal in each test vessel; checked 2-3 times daily
Date/Time for Test Start	24-Feb-06 @ 14:50
Date for Test Completion	06-Mar-06
Volume / Depth of Wet Sediment	175 mL; 4 cm
Volume / Depth Test Water	775 mL; 9 cm
Water Renewal	None; there was no need to replace water due losses from evaporation.
# Organisms / Vessel	Twenty (20) amphipods were randomly assigned to each test chamber
Lab Replicates	There were five (5) laboratory replicates for each field replicate. There was also one (1) measurement beaker for each sediment sample.
Feeding Regime	None
Observations & Measurements	
Dissolved Oxygen Concentrations (DO) and Temperature	In overlying water, at the start of the test and 3 times/week (MWF) in the measurement beakers. See "Test Conditions and Survival Data" sheets.
pH, Conductivity, and Ammonia Concentrations	pH, conductivity, and ammonia concentrations were measured in sub- samples taken from all replicates at the start and end of the test. Probes were rinsed with clean water between sample measurements. See "Test Conditions and Survival Data" sheets.
Sediment Appearance and Observations During Test	See "Aeration Checks" sheet.
Survival	All live amphipods recovered from the overlying water or sediment in a single test chamber were counted.
Analytical Methods	Ammonia: Vizon SOP 5330 (Colorimetric Analysis of Ammonia Nitrogen in Water and Wastewater). Current Version. Adapted from: Sheiner D. 1976. Determination of Ammonia and Kjeldahl Nitrogen by Indophenol Method. <i>Water Research.</i> Vol. 10:31-36. Pergammon Press. Similar in principle to: Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 20th Edition, 1998. Method 4500 – NH3 F.

······					
	Sulfide:				
	Examination of Water and Wastewater, 20th ed., 1998.				
Sampling, Sample Preparation and Storage prior to Analysis	Ammonia and sulfide samples were collected by removing 10-20 mL from each replicate and placing in a 125-mL plastic bottle; samples were stored at $4 \pm 2^{\circ}$ C prior to analysis.				
Anything Unusual about the Test, Deviation from Test Method, Problems	• There were no water quality measurements taken in the controls on Day 3, but measurements were taken in all test sediments.				
Froblems	• Water temperature was below 14°C (13.3-13.9°C) on Day 7 but was between 14.0 and 15.2°C on the other sampling days.				
	 Ammonia was not measured on Day 10 in JW1. 				
Results					
Endpoints	Mean (± SD) % of amphipods that survived the 10-day exposure. See "10-d <i>Eohaustorius estuarius</i> Survival Test" sheet.				
Endpoint Results	Comparison with Laboratory Control				
	There was no difference in survival between the test sediments and the				
	laboratory control ($p > 0.05$).				
	Comparison with Reference Sediments (JW9 and JW10)				
	There was no significant difference in survival between JW10 and the test sediments ($p > 0.05$).				
	There was a significant difference between JW9 and test sediments				
	JW3, JW5, JW6, JW7, and JW12. However, the maximum difference was 17% (between JW9 and JW3).				
	Statistical analyses were conducted using ToxCalc Ver. 5.0.23				
QA/QC					
Test Validity Criteria	Control survival was >90% (mean pooled control survival was 100%).				
Ref Tox Test LC50 (95% CL)	7.0 (5.7 – 8.6)				
(mg Cd ²⁺ /L) and Duration of Test	Test duration was 96 hours.				
Invalid Ref Tox Test? If YES state	No; the control survival was 100%. For the test to be valid the control				
initiation and/or findings of a test	survival should be ≥90%. See "Control Chart" sheet.				
system review					
Ref Tox Test Historic Geometric	9.8 ± 3.2; 2SD range: (3.4 – 16.1)				
Mean (±SD) and 2SD Range (mg Cd ²⁺ /L)					
Date of Ref Tox Test (dd-mm-yr)	24-Feb-06				
Organisms Batch and Condition of Ref Tox Test	Same batch of organisms used in the tests as for the reference toxicant; static, 96-h water-only test				
	,				

				Mar	ine Amph	ipods-1() Day Sur	vival	-			
Start Date:	2/24/2006		Test ID:	EE128-02	05		Sample I	nple ID: 128-Jacques Whitf			ord	
End Date:	3/6/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample	Гуре:	SM-Sedi	ment		
Sample Date:			Protocol:	EPS1/RM	/26-Amph	ipods	Test Spe	cies:	EE-Eoha	ustorius e	stuarius	
Comments:	Test Sedi	iments Co	mpared to	Reference	e Sedimer	its only						
<u> Conc-% </u>	1	2	3	4	5							
JMƏ	1.0000	1.0000	0.9000	0.9500	1.0000							
JW10	0.9000	0.8500	0.8000	1.0000	0.9500							
JW1	0.9500	0.7500	0.8500	0.9500	0.9000							
JW2	0.9000	0.8000	1.0000	0.8500	0.8500							
JW3	0.6500	0.7000	0.8500	0.9000	0.9000							
JW4	0.8500	0.9000	0.9000	0.8000	0.9000							
JW5	0.7000	0.9500	0.9500	0.7500	0.9000							
JW6	0.8000	0.7500	0.9000	0.8000	0.8500							
JW7	0.9000	0.8500	0.7000	0.8500	0.9000							
JW12	0.9500	0.8500	0.8500	0.7500	0.6500							
			Tı	ansform:	Arcsin Sc	uare Ro	ot		1-Tailed			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
JW9	0.9700	1.0778	1.3941	1.2490	1.4588	6.802	5	*				
JW10	0.9000	1.0000	1.2667	1.1071	1.4588	10.996	5					
JW1	0.8800	0.9778	1.2320	1.0472	1.3453	10.233	5	2.075	2.480	0.1938		
JW2	0.8800	0.9778	1.2322	1.1071	1.4588	11.056	5	2.072	2,480	0.1938		
*JW3	0.8000	0.8889	1.1200	0.9377	1.2490	13.087	5	3.508	2,480	0.1938		
JW4	0.8700	0.9667	1.2055	1.1071	1.2490	5.314	5	2.414	2.480	0.1938		
*JW5	0.8500	0.9444	1.1956	0.9912	1.3453	13.964	5	2.541	2.480	0.1938		
*JW6	0.8200	0.9111	1.1367	1.0472	1.2490	6.772	5	3.294	2.480	0.1938		
*JW7	0.8400	0.9333	1.1671	0.9912	1.2490	9.033	5	2.905	2.480	0.1938		
*JW12	0.8100	0.9000	1.1353	0.9377	1.3453	13.484	5	3.312	2.480	0.1938		
Auxiliary Test	s						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indica	ates norma	al distribut	ion (p > 0.0	01)		0.9607		0.926		-0.1501	-0.7093
Bartlett's Test i	ndicates e	qual varia	nces (p =	0.70)	•		5.48445		20.0902			
The control me	ans are no	ot significa	ntly differe	ent (p = 0,1	3)		1.69146		2.306			
Hypothesis Te	est (1-tail, I	0.05)					MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	indicates s	significant	difference	s		• ···	0.10019	0.10338	0.03464	0.01526	0.04446	8, 36
Treatments vs	JW9											•
					Dose-F	lespons	e Plot					

	Marine Amphipods-10 Day Survival											
Start Date:	2/24/2006	;	Test ID:	EE128-02	05		Sample I	D:	128-Jaco	ues Whitf	ord	
End Date:	3/6/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample -	vpe:	SM-Sedi	ment	0.4	
Sample Date:			Protocol:	EPS1/RM	/26-Amphi	ipods	Test Spe	cies:	EE-Eoha	ustorius e	stuarius	
Comments:	Test Sed	iments Co	mpared to	Reference	e Sedimen	its only	•				oraanao	
Conc-%	1	2	3	4	5	<u>_</u>	•••					·
JW9	1.0000	1.0000	0.9000	0.9500	1.0000			<u>.</u>				
JW10	0.9000	0.8500	0.8000	1.0000	0.9500							
JW1	0.9500	0.7500	0.8500	0.9500	0.9000							
JW2	0.9000	0.8000	1.0000	0.8500	0.8500							
JW3	0.6500	0.7000	0.8500	0.9000	0.9000							
JW4	0.8500	0.9000	0.9000	0.8000	0.9000							
JW5	0.7000	0.9500	0.9500	0.7500	0.9000							
JW6	0.8000	0.7500	0.9000	0.8000	0.8500							
JW7	0.9000	0.8500	0.7000	0.8500	0.9000							
JW12	0.9500	0.8500	0.8500	0.7500	0.6500							
			Tr	ansform:	Arcsin Sc	uare Ro	ot		1-Tailed			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
JM9	0.9700	1.0778	1.3941	1.2490	1.4588	6.802	5					
JW10	0.9000	1.0000	1.2667	1.1071	1.4588	10.996	5	*				
JW1	0.8800	0.9778	1.2320	1.0472	1.3453	10.233	5	0.428	2.480	0.2010		
JW2	0.8800	0.9778	1.2322	1.1071	1.4588	11.056	5	0.425	2.480	0.2010		
JW3	0.8000	0.8889	1.1200	0.9377	1.2490	13.087	5	1.809	2,480	0.2010		
JW4	0.8700	0.9667	1.2055	1.1071	1.2490	5.314	5	0.755	2.480	0.2010		
JW5	0.8500	0.9444	1.1956	0.9912	1.3453	13.964	5	0.877	2.480	0.2010		
JW6	0.8200	0.9111	1.1367	1.0472	1.2490	6.772	5	1.603	2,480	0.2010		
JW7	0.8400	0.9333	1.1671	0.9912	1.2490	9.033	5	1.229	2,480	0.2010		
JW12	0.8100	0.9000	1.1353	0.9377	1.3453	13.484	5	1.621	2.480	0.2010		
Auxiliary Test	5						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indica	ates norma	al distributi	on (p > 0.0	01)		0.96207		0.926		-0.0574	-0.8157
Bartlett's Test in	ndicates e	qual variar	nces (p = (0.75)			5.07539		20.0902			
The control me	ans are no	t significa	ntly differe	nt (p = 0.1	3)		1.69146		2.306			
Hypothesis Te	st (1-tail, I	0.05)					MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	indicates n	io significa	int differer	ices			0.14449	0.15873	0.01307	0.01642	0.60991	8.36
Treatments vs	JW10									. –		,

Reviewed by: KK OUApr 13

ToxCalc v5.0

					Mar	ine Amph	ipods-10) Day Surv	ival				
Star	rt Date:	2/24/2006		Test ID:	EE128-01	05		Sample IE):	128-Jacqu	es Whitford		
End	Date:	3/6/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample T	vpe:	SM-Sedim	ent		
San	nple Date:			Protocol:	EPS1/RM	/26-Amphi	pods	Test Spec	ies:	EE-Eohau	storius estuariu	s	
Con	nments:					,	•					-	
	Conc-%	1	2	3	4	5							
	Control-1	1.0000	1.0000	1.0000	1.0000	0.9500							
	Control-2	1.0000	1.0000	1.0000	1.0000	1.0000							
	JW1	0.9500	0.7500	0.8500	0.9500	0.9000							
	JW2	0.9000	0.8000	1.0000	0.8500	0.8500							
	JW3	0.6500	0.7000	0.8500	0.9000	0.9000							
	JW4	0.8500	0.9000	0.9000	0.8000	0.9000							
	JW5	0.7000	0.9500	0.9500	0.7500	0.9000							
	JW6	0.8000	0.7500	0.9000	0.8000	0.8500							
	JW7	0.9000	0.8500	0.7000	0.8500	0.9000							
	JW9	1.0000	1.0000	0.9000	0.9500	1.0000							
	JW10	0.9000	0.8500	0.8000	1.0000	0.9500							
	JW12	0.9500	0.8500	0.8500	0.7500	0.6500							
				TI	ransform:	Arcsin Sc	uare Ro	ot	Rank	1-Tailed			
<u> </u>	conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical			
v	Pooled	0.9950	1.0000	1.4474	1.3453	1.4588	2.479	10					
:	*JW1	0.8800	0.8844	1.2320	1.0472	1.3453	10.233	5	16.00	19.00			
	JW2	0.8800	0.8844	1.2322	1.1071	1.4588	11.056	5	20.50	19.00			
	*JW3	0.8000	0.8040	1.1200	0.9377	1.2490	13.087	5	15.00	19.00			
	*JW4	0.8700	0.8744	1.2055	1.1071	1.2490	5.314	5	15.00	19.00			
	*JW5	0.8500	0.8543	1.1956	0.9912	1.3453	13.964	5	16.00	19.00			
	*JW6	0.8200	0.8241	1.1367	1.0472	1.2490	6.772	5	15.00	19.00			
	*JW7	0.8400	0.8442	1.1671	0.9912	1.2490	9.033	5	15.00	1 9 .00			
	JW9	0.9700	0.9749	1.3941	1.2490	1.4588	6.802	5	32.00	19.00			
	JW10	0.9000	0.9045	1.2667	1.1071	1.4588	10.996	5	21.00	19.00			
<u></u>	*JW12	0.8100	0.8141	1.1353	0.9377	1.3453	13.484	5	15.50	19.00			
Aux	iliary Test	S						Statistic		Critical	Skev	<u>v</u>	Kurt
Koln	nogorov D	Test indica	ates non-n	iormal dist	ribution (p	<= 0.01)		1.09598		1.035	-0.111	16	-0.3981
Bart	lett's lest	indicates e	qual varia	nces (p =	0.06)			17.9962		23.2093			
The	control me	ans are no	ot significa	ntly differe	ent (p = 0.3	15)		1		2.306			
HVD	otnesis Te	est (1-tail. I	0.051										

Wilcoxon Rank Sum Test indicates significant differences Treatments vs Pooled Controls

Dose-Response Plot

10-d Echaustorius estuarius Survival Test

Vizon SciTec Inc. Vancouver, BC

			Sample	Mean Survival	1
Sample ID	Log in ID	# Surviving	Survival (%)	(%)	SD
Control-1M	-	20	100	99	2
Control-1M	-	20	100	Pooled	Pooled
Control-1M	-	20	100	100	2
Control-1M	-	20	100		
Control-1M	-	19	95		
Control-2M	-	20	100	100	0
Control-2M	-	20	100		
Control-2M		20	100		
Control-2M	. -	20	100		
Control-2M	-	20	100		
JW1	060210J-01	19	95	88	8
JW1	060210J-01	15	75		
JW1	060210J-01	17	85		
JW1	060210J-01	19	95		
JW1	060210J-01	18	90		
JW2	060210.1-02	18	90	88	8
JW5	060210.1-02	16	80		
.IW2	060210.1-02	20	100		
.IW2	060210.1-02	17	85		
.IW2	0602100-02	17	85		
11/2	060210102	12	65	80	10
11/2	0602103-03	14	70	00	
	0602100-03	14	05		
10/03	0602100-03	10	00		
JVV3	0602103-03	10	90		
JVV3	0002103-03	10	90	07	
JW4	060210J-04	17	85	8/	4
JW4	060210J-04	18	90		
JW4	060210J-04	18	90		
JW4	060210J-04	16	80	↓	
JW4	060210J-04	18	90		
JW5	060210J-05	14	70	85	12
JW5	060210J-05	19	95		
JW5	060210J-05	19	95		
JW5	060210J-05	15	75		
JW5	060210J-05	18	90		
JW6	060210J-06	16	80	82	6
JW6	060210J-06	15	75		
JW6	060210J-06	18	90		
JW6	060210J-06	16	80		
JW6	060210J-06	17	85		
JW7	060210J-07	18	90	84	8
JW7	060210J-07	17	85		
JW7	060210J-07	14	70		
JW7	060210J-07	17	85		
JW7	060210J-07	[,] 18	90		
JW9	060210J-09	20	100	97	4
JW9	060210J-09	20	100		· · · · · · · · · · · · · · · · · · ·
JW9	060210J-09	18	90		
JW9	060210J-09	19	95	i	<u></u>
11/1/0	060210.1.09	20	100	1	

N:\2-11\2-11-965 (Misc Sediment)\B Jacques Whitford Amphipods and Neanthes\Summary of Survival Results for E.estuarius Tests Page 1 of 2

10-d Eohaustorius estuarius Survival Test

Vizon SciTec Inc. Vancouver, BC

			Sample	Mean Survival	
Sample ID	Log In ID	# Surviving	Survival (%)	(%)	<u>SD</u>
JW10	060210J-10	18	90	90	8
JW10	060210J-10	17	85		
JW10	060210J-10	16	80		
JW10	060210J-10	20	100		
JW10	060210J-10	19	95	·	
JW12	060210J-12	19	95	81	11
JW12	060210J-12	17	85		
JW12	060210J-12	17	85		
JW12	060210J-12	15	75		
JW12	060210J-12	13	65		

Vizon SciTe	ec Marine An	nphipod 10 Day A Test Conditions	cute Survival Sed and Survival Data	liment Test			
Client # & Name:	128 - Jao	ques Whitford	Start Date & Time:	06 Feb 24	@ 14:50		
Sample Date:	N/A	-	End Date:	06 Mar Of	>		
Sample Received:	N/A		species: Echaustorius estuarius				
Vizon Project #:	2-11-09	65B	Organism Lot #: SEOGO 222				
Analyst(s):	P.Sinclair, J	Keating KSa	ben				
Sample ID:	Control 11	1	- Vizon #:	nla			
	Day 1	3	5	7	10		
Day	Friday	Monday	Wednesday	Friday	Monday		
Date	06 Feb 24	/	06 Feb Marci	06 Maro3	06 Har 06		
Temperature(°C)	14.8		14.2	13.1	14.2		
D.O. (ma/L)	85	/	8.3	8.2	8.5		
pH	8.1				8.1		
Salinity (‰)	้ม้า	1			28		
Analyst	P5		05	PS)ic 05		
		_1/		· · · · · · · · · · · · · · · · · · ·			
			# Alive				
Replicate	A	B	C	D	E		
Analyst	MAT JU	05.		<u> </u>	19		
Sample (D:	Control a	Ammonia Sa Initial	ample Taken Final Vizon #:	nla			
-				<u>_</u>			
Dev	Day 1	3	5	7	10		
Date	Friday	ivionday	OF Mac OV	Friday	Cr. No. (D)		
Temperature(°C)	14.8		14.2	13.6	Jun		
D.O. (mg/L)	8.5		8,2	8.3	8.6		
pH	8.1	1			87		
Salinity (‰)	98				38		
Analyst	<٩		<u>es</u>	62	JK PS		
Deulisata			# Alive				
neplicate	A	- B		<u> </u>	<u> </u>		
Analvst		vic vic		<u> </u>			
	L~!>			······			
		Ammonia S	ample Taken		·		
			l Final,				
:		L VKS	1				
ì							

		Test Conditions	and Survival Sec	a ment Test		
Client # & Name:	128-Jacque	s Whitford	Start Date & Time:	06Feb24@1	4:50	
Sample Date:	06 Feb	03	End Date:	06 Mar 06		
Sample Received:	06 Feb	10	Species:	Echaustorius estuarius		
Vizon Project #:	2-11-0965B		Organism Lot #:	SEOGODA	2	
Analyst(s):	P. Sinelaur	KSeiber	~, J. Danis	Sek, G. LONTY J.	Keeting Tam V	
Sample ID:	JWI		Vizon #:	060310]	-01	
	Day 1	3	5	7	10	
Day	Friday	Monday	Wednesday	Friday	Monday	
Date	a Reb 24	06 Feb 27	OGMARDI	06 MARO3	06 Marob	
Temperature(°C)	15.2	14.6	14.7	13.6	14.4	
D.O. (mg/L)	8-2	8.3	8.5	8.0	8.6	
pH	8.0				5.0	
Salinity (‰)	28		Press and the second	enter en enter en ser en s	29	
Analyst	PS KSUD	70	GL	GL	JK PS	
	1		# Alive			
Replicate	Α	В	C C	D	E	
	in in	1	07			
	1 10	1 15	1 . (19	1 23 1	
Analyst)K	K	JK	.)K	18 VK	
Analyst		15 X X	JK	19 .)K 128 J	18 VK W Measura A : 17	
Analyst)K	۲۶ ۲۵ Ammonia S	ample Taken	19 .)K 128 J	18 <i>JK</i> W Measura A : 17 + 2 d	
Analyst	лана Э <u>х</u>	$\frac{15}{-1\%}$ Ammonia S Initial $\sqrt{1.5}$	ample Taken	/9 /28J	18 UK W Measura A : 17 H 2 ct.	
Analyst Sample ID:	JW2	List Ammonia S Initial راجر S	ample Țaken Final Vizon #:	19 JK 128J 060210J-	18 VK W Measura A : 17 + 2 d	
Analyst Sample ID:	JW2 Day 1	$ \begin{array}{c} 15 \\ -JK \\ Ammonia S \\ Initial \\ JILS \\ 3 \end{array} $	ample Taken Final Vizon #:	19 JK 128J 060210J- 7	18 JK W Measura A : 17 + 2 ct. 02 10	
Analyst Sample ID: Day	Day 1	Listing Straight Str	Sample Taken Final Vizon #:	7 	18 VK W Measura A : 17 + 2 ct 02 10 Monday	
Analyst Sample ID: Day Date	Day 1 Briday OG FED 34	$ \begin{array}{c} 15 \\ -J_{K} \\ Ammonia S \\ Initial \\ J/LS \\ \hline 3 \\ Monday \\ O(6 + Hor Feb 21 \\ \end{array} $	JiL ample Taken Final Vizon #: 5 Wednesday 06 MAP 0 1	19 128J 128J 128J 128J 128J 128J 128J 128J	18 JK W M easure A : 17 + 2 cl 02 10 Monday CGMar OL	
Analyst Sample ID: Day Date Temperature(°C)	JK JW2 Day 1 [™] Friday 06 FPh 34 IS.1	$ \begin{array}{c} 15 \\ -J_X \\ Ammonia S \\ Initial \\ J/LS \\ \hline 3 \\ Monday \\ 0.6 Hor Feb 21 \\ 14.7 \\ 12 \\ 2 \end{array} $	JiL ample Taken Final Vizon #: 5 Wednesday 06 MAP 0 1 14.4	19 .)K 128J 128J 128J 128J 128J Friday 060210J - Friday 06MAR03 13.3 827	18 VK W M easure A : 17 + 2 cc 02 10 10 Monday CG Mar OL 1440 6	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L)	Day 1 	$ \begin{array}{c} 15 \\ -JK \\ \hline Ammonia S \\ Initial \\ J/LS \\ \hline Monday \\ 0.6 + Hor Feb 21 \\ 14.7 \\ 8.3 \\ \end{array} $	JiL ample Taken Final Vizon #: 5 Wednesday 06 MAP of 14.4 8.6	19 .)K 128J 128J 128J 7 Friday 060210J - Friday 06 MAR 03 13.3 8.2	18 VK W M easure A : 17 + 2 cc 02 10 Monday CG Mar OL 1440 8.6 5.0	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰)	Day 1	<u>Ammonia S</u> <u>اnitial</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناع <u>البناع</u> <u>البناع <u>البناع</u> <u>البناع <u>البناع</u> <u>البناع</u> <u>البناع</u> <u>البناعلما <u>البناع <u>البناعلما <u>البناع <u>البناع <u>البناع <u>الما</u> <u>البناع <u>البناع <u>البناع <u>البناع <u>الم</u> <u>البناع <u>البناع <u>الماعم <u>البناع <u>الم</u> <u>الم</u> <u>م</u> <u>الم</u> <u>م</u> <u>الم</u> <u>م</u> <u>المم <u>م</u> <u>م</u> <u>م</u> <u>م</u> <u>مم</u> <u>م</u> <u>مم</u> <u>م</u> <u>مم</u> <u>مم</u> <u>مم</u> <u>ممم مم <u>مم</u> <u>مم</u> <u>ممم</u> <u>ممم</u> <u>ممم</u> <u>ممم ممم </u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>	Sample Taken Final Vizon #: 5 Wednesday 06 MAR 0 (14.4 8.6	19 .)K 128J 128J 128J 128J 128 7 Friday 13.3 8.2	18 VK W M easure A : 17 + 2 cc 02 10 10 Monday CG Mar OL 14 8.6 8.6 8.6 9.0 29	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰) Analyst	Day 1 Day 1 Friday 06 Feb 34 15.1 8.0 8.0 3.7 JD 05 KS	$ \begin{array}{c} 15 \\ -JK \\ \hline Ammonia S \\ Initial \\ J/LS \\ \hline Monday \\ 0.6 + Hor Feb 21 \\ 14.71 \\ 8.3 \\ \hline S \\ D \\ D$	JiL Sample Taken Final Vizon #: 5 Wednesday 06 MAP of 14.4 8.6	19 .)K 128J 128J 128J 7 Friday 060210J - Friday 06MAR03 13.3 8.2	18 VK W M easure A : 17 + 2 cc 02 10 Monday CG Mar OG 1440 8.6 9.0 29 29	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰) Analyst	JK JK Day 1 [™] Friday 06 FPh 34 15.1 8.2 8.2 8.0 3.7 JD p5 KS	$ \begin{array}{c} 15 \\ -J_{K} \\ \hline Ammonia S \\ Initial \\ J/LS \\ \hline Monday \\ \hline 06 + Hor Feb 21 \\ 14.7 \\ 8.3 \\ \hline .) \\ \end{array} $	JiL ample Taken Final Vizon #: 5 Wednesday 06 MAP 0 1 14.4 8.6	19 .)K 128J 128J 128J 128J 128J 128J 128J 128J	18 VK W M easure A : 17 + 2 cc 02 10 Monday 06 Mar OL 14×10 8.6 5.0 29 29	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰) Analyst	JW2 JW2 Day 1 [™] Friday 06 Feb 34 15.1 8.0 37 JD p5 KS	$ \begin{array}{c} 15 \\ -JK \\ \hline Ammonia S \\ Initial \\ J/LS \\ \hline Monday \\ 0.6 + Hor Feb 21 \\$	JiL ample Taken Final Vizon #: 5 Wednesday 06 MAP of 14.4 8.6 GL # Alive	19 .)K 128J 128J 060210J - Friday 06MAR03 13.3 8.2 (41	18 VK W M easura A : 17 H 2 cc O 2 10 Monday CG Mar OC IUNO 8.6 5.0 29 8.5	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰) Analyst Replicate	Day 1 Day 1 Friday 06 Feb 34 15.1 8.2 8.2 8.0 3.7 JD p5 KS	$ \begin{array}{c} 15 \\ -J_{K} \\ \hline Ammonia S \\ Initial \\ J/LS \\ \hline Monday \\ 06 +tor feb 21 \\$	$ \begin{array}{c c} $	19 .)K 128J 128J 060210J - Friday 06MAR03 13.3 8.2 6.2 (41 (41)	18 VK W M easure A : 17 H 2 cc 02 10 Monday CG Mar OL 14×10 8.6 5.0 29 29 17	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰) Analyst Replicate	JK JK Day 1 MFriday 06 Feb 34 15.1 8.0 3.7 JD 05 KS	$ \begin{array}{c c} & 15 \\ & -J_{K} \\ \hline \\ & Ammonia S \\ \hline \\ & Initial \\ & J/LS \\ \hline \\ & J/LS \\ \hline \\ & Monday \\ \hline \\ & 06 + Hor Feb 21 \\ \hline \\ & 14.71 \\ \hline \\ & 8.3 \\ \hline \\ & 5.3 \\ \hline \\ & J/LS \\ \hline \\ & B \\ \hline \\ & D \\ \hline$	JiL Sample Taken Final Vizon #: 5 Wednesday 06 MAP of 14.4 8.6 GL # Alive C SO (5)	19 .)K 128J 128J 060210J - Friday 06MAR03 13.3 8.2 (41 41	18 VK W M easure A : 17 + 2 cc 02 10 Monday CG Mar OC 1440 8.6 9.0 29 29 5 E 17 9.5	
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰) Analyst Replicate Analyst	Day 1 Day 1 Friday 06 Feh 24 15.1 8.2 8.2 8.2 8.0 2.7 JD ps KS	15 X Ammonia S Initial J/LS 3 Monday 06 HorrFreh21 14.7 8.3	$ \frac{5}{14.4} $ $ \frac{5}{14.4} $ $ \frac{6}{6} = \frac{6}{14.4} $	19 128 J 128 J		
Analyst Sample ID: Day Date Temperature(°C) D.O. (mg/L) pH Salinity (‰) Analyst Replicate Analyst	JK JK Day 1 [™] Friday 06 FPh 34 15.1 8.0 3.7 3.7 JD pS KS A IS 00 pS KS	Ammonia S J_{X} Ammonia S Initial J_{X} S Monday 0_{6} Hor Feb 21 14.71 8.3 3 16 ($1_{0.00}$) 4 5 Ammonia S	JiL Sample Taken Final Vizon #: 5 Wednesday 06 MAP of 14.4 8.6 GL # Alive C Sample Taken	19 .)K 128J 128J 060210J - 7 Friday 06MAR03 13.3 8.2 (41 41 05	18 VK W M easure A : 17 + 2 cc 02 10 Monday CG Mar OG 1440 8.6 9.0 29 17 9.0 29 17 9.0 29	

• · · ·

- .

Vizon SciTe	ec Marine Am	phipod 10 Day A Test Conditions	Acute Survival Sec and Survival Data	diment Test a		
Client # & Name:	128-Jacqu	es Whitford	_Start Date & Time:	06 Feb 24@	14:50	-
Sample Date:	06 Feb 03	04	End Date:	06 Mar 06	,	_
Sample Received:	06 Feb 10		_ Species:	Echaustoriu	s estuarius	-
Vizon Project #:	2-11-0965	<u> </u>	_ Organism Lot #:	SEOGOZZZ		-
Analyst(s):	P. Sinclair	KSerben	J. Danisek, 4	LUNTY, J. Keeting	Tam VD, LS	Sta Vne -
Sample ID:	_TW3_		Vizon #:	0602107-	-03	-
	Dav 1	3	5	7	10	1
Day	Fridav	Mondav	Wednesday	Friday	Monday	1
Date	06 Feb 74	06 Feb 27	OLOMONOI	0644203	06 Marob	1
Temperature(°C)	14.9	14.7	14.4	13.6	14.2	1
D.O. (mg/L)	8.3	8.4	B.7	8.1	BESN & 8.6]
pН	8.0			Rendered and Company and Char	80]
Salinity (‰)	28				29]
Analyst	so ps ks	OL	GL	GL	Jik PS]
			# Alivo			7
Benlicate	Δ	R		П	F	
	13	14	ŤŦ	18	18	1
Analyst	JX	TV	TV	TV	TV	
		Annua an io f	Semale Token		JW3 Mersure	167
,		Ammonia s	Final	1	(125)	
		JKS		1		
Sample ID:	JWY		Vizon #:	0603107-0	24	
	Day 1	3	5	7	10	
Day	Friday	Monday	Wednesday	Friday	Monday	N. C.
Date	OFEP 24	06 Feb 27	Usteb Marol	06 MAZO'3	06 Mar05	art a the
D O (mg/L)	-15.1	<u> </u>	9.1	15.9	95	
D.O. (IIIg/L)	8.0	<u> </u>	ויס	<u> </u>	<u></u>	
Salinity (%)	28	the site of an and the second second		Notice - Second to Musee	วัส	
Analyst	JOPS KS	JD	GLILS	GL	JE PS	
	17					-
		, <u> </u>	# Alive			-
Replicate	A	B	C		E	-
Analyst	11(tidead)	1 10 05			B LTURAL	1
	<u> </u>	L (2	1 13	<u>F3</u>	¥ ¥	4
. •		Ammonia S	Sample Taken	_ .	· · · ·	•
•		Initial	Final /]		
		VKS		J		
					· .	<i>i.</i>
•	а.,					4.3.

ĺ

5

;

Vizon SciTe	C Marine Am	phipod 10 Day A Test Conditions	cute Survival Sec and Survival Data	diment Test a	
Client # & Name:	128-Jacque	s Whitford	Start Date & Time:	06 Feb 24 @	14:50
Sample Date:	06 Feb t	5304	_ End Date:	06 Marob	- 414 - 14 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18
Sample Received:	06 Feb 11	00	Species:	Echaustori	<u>us estuarius</u>
Vizon Project #:	2-11-0965	B	_ Organism Lot #:	SEOGOZZ	12
Analyst(s):	P. Sinclair	J. Daniset	(GLONTY, J.	Keating, LStar	roff KSuben
Sample ID:	JWS		Vizon #:	060210J	-05
	Day 1	3	5	7	10
Day	Friday	Monday	Wednesday	Friday	Monday
Date	06 Feb OY	06 Feb 27	ObMarol	06 MAR 03	OG Marob
Temperature(°C)	15.0	14.7	14.1	13.4	14.6
D.O. (mg/L)	83	8.5	8-9	8.0	86
рН	ø.0				8.1
Salinity (‰)	27				ୢୖ୰୳
Analyst	OC 29	a	FILLS	GL	JK PS
	· · · · · · · · · · · · · · · · · · ·		# Alive		
Replicate	Α	В	C	D	E
	14	19	19	15	18
Analyst	٦K	JK	JK	ĴĶ	 ∕دنہ
		Ammonia S	ample Taken		
		Initial	Final	1	
		JKS		1	
Sample ID:	TW6	· · · · · · ·	Vizon #:	0602107	-06
	Day 1	3	5	7	10
Day	Friday	Monday	Wednesday	Friday	Monday
Date	06 10 24	Ole Feb 27	0640101	06 MAROZ	06 Mar 06_
Temperature(°C)	12.0	14.6	<u> </u>	15. 8 22	
pH	8.1	8.6		0.0	
Salinity (‰)	20			A CONTRACTOR OF A CONTRACTOR	29
Analyst	DC JD	ac	GLILS	GL	JKPS
			· · · · · · · · · · · · · · · · · · ·	,	
Daultaata			# Alive		
replicate	A	L B		D the	L 1-1
Analyst	13	6	LS	18** (_*)	15
	L	• • •		1 <u></u>	
1		Ammonia S	ample Taken	1	· · · ·
н. На страна стр				4	
			<i>/</i>	J	
-					

.

(

......

Vizon SciTe	C Marine Am	phipod 10 Day A Test Conditions	cute Survival Sec and Survival Data	diment Test a	
Client # & Name:	128-Jacq	ves Whitford	Start Date & Time:	06 Feb 241	@ 14:50
Sample Date:	06 Feb 8	304 +06 Feb C	End Date:	06 Mar 06	
Sample Received:	06 Feb 10		Species:	Echaustorius	s estuarius
Vizon Project #:	2-11-096	<u>5B</u>	Organism Lot #:	SE060222	2
Analyst(s):	1. Sinclair	. Danise	K. G. LONT	Fulkasting T	am VD, LSTONN
Sample ID:			Vizon #:	060210	T-07
	Day 1	3	5	7	10
Day	Friday	Monday	Wednesday	Friday	Monday
Date	06 8624	06 Feb 27	Oblar 01	06 MAR03	06 Mar 06
Temperature(°C)	14.9	14.8	14.4	13.6	14.1
D.O. (mg/L)	Ψq	8.6	9.0	8.2	8.1
Hq	8.0				8.0
Salinity (‰)	31				રુવ
Analyst	al 20		GLUS	GL	11 85
				·	
			# Alive	<u> </u>	
Replicate	A	B	C .		
Analyst	GI		14 TV		<u> </u>
/ inalyot	<u> </u>		· · · · · · · · · · · · · · · · · · ·		hig dana
		Ammonia Sa	ample Taken	ī.	
		Initial	Finar		
		V 165			
Sample ID:	JW9	· · · · · ·	Vizon #:	0603107-	- 09
	Day 1	3	5	7	10
Day	Friday	Monday	Wednesday	Friday	Monday
Date	CG FEBJY	06 Feb 27	Obmarol	OG MAR 03	Comarol
Temperature(°C)	15.0 .	14.5	14-3	13.3	14.1
D.O. (mg/L)	<u>×-</u>	8.4	<u> </u>	8.5	8-6
p⊓ Salipity (%)	20				29
Analyst	QC ID		(A.U.S	(31	
i	<u> </u>				
			# Alive		
Replicate	A	В	C	D	E
	20	30	(18)18	19	20
Analyst	PS	<u> </u>	TV	JK	TV
		Ammonia G	amnie Takon		
		Initial	Final /	1	
		1/145		· · ·	
				J .	

Vizon SciTe	C Marine Am	phipod 10 Day A Test Conditions	cute Survival Sec and Survival Data	diment Test a	
Client # & Name:	128-Jacqu	es Whitford	Start Date & Time:	06 Feb 24	@ 14:50
Sample Date:	06 Feb 63	-07	End Date:	06 Mar 06	
Sample Received:	06 Feb 10		Species:	Echaustori	us estuarius
Vizon Project #:	2-11-0965	<u>B</u>	Organism Lot #:	SECCODA	2
Analyst(s):	P. Sinclair	KSuban J. Danis	ek G. LONT	K. J. Keening K.	Saber, LStar
Sample ID:	ONNE		/ Vizon #:	060310]	5-10
· ·	Day 1	3	5	7	10
Day	Friday	Monday	Wednesday	Friday	Monday
Date	UG Febay	06 Feb 27	obharol	06 MALO3	ObMarob
Temperature(°C)	<u> </u>	14.6		13.4	14.1
D.O. (mg/L)	<u> </u>	8.4	<u> </u>	8.3	8.5
pH Solinity (%)	<u>8.0</u>				1.0
Sainity (700)	06	.10	CALLS	0	
Analyst	E S OD		GHIS	<u>(</u> 1-	JK PS
			# Alive		
Replicate	A 10 ²		K5 15/1/	D	
Analyst	ls	45	LS IS	XS	
	· · · · · · · · · · · · · · · · · · ·	Ammonio R	male Teken		
		Ammonia Sa	Final		
		VILS			
Sample ID:	JWIZ	· · · · ·	Vizon #:	060210J	-12
	Day 1	3	5	7	10
Day	Friday	Monday	Wednesday	Friday	Monday
Date	UG FB24	Ole Feb 27	Opmarol	66 MARO3	06 Mar06
D.O. (mg/L)	<u> </u>	<u>4.</u> Q 4	<u>14.4</u> 84	12,7	<u>M.U</u> 8.5
pH	<u> </u>				8.3
Salinity (‰)	28				29
Analyst	05 20	QC	GLIS	GL	JK PS
			# Alive		······································
Replicate	A	٨SB	C	D	E
	19	17+ Fidead	17	15	(3
Analyst	KS		JK 4K -	15	<u>GL</u>
1		Ammonia Sa	ample Taken		
		Initiat	Final /		
4	۴	VKS			

tentrepation to the

÷

•

Vizon SciTec, Inc. Vancouver, BC

				Day 0						Jay 10		
				Total	%	Unionized				Total	%	Unionize
Sample	Salinity		Temperature	Ammonia	Unionized	Ammonia	Salinity		Temperature	Ammonia	Unionized	Ammonia
Name	(%°)	Hd	(°C)	(mg N/L)	Ammonia	(mg N/L)	(%)	Ηď	(°C)	(mg N/L)	Ammonia	(mg N/L)
1W1	28	8.0	15.2	0.224	2.17	0.0049	29	8.0	14.4	N/A	2.02	N/A
JW2	27	8.0	15.1	0.235	2.22	0.0052	29	8.0	14.0	0.224	2.02	0.0045
5WC	28	8.0	14.9	0.212	2.17	0.0046	29	8.0	14.2	0.167	2.02	0.0034
JW4	28	8.0	15.1	0.257	2.17	0.0056	29	8.0	14.0	0.070	2.02	0.0014
JW5	27	8.0	15.0	0.198	2.22	0.0044	29	8.1	14.6	0.104	2.72	0.0028
JWG	27	8.1	15.0	0.157	2.78	0.0044	29	8.0	14,4	0.082	2.02	0.0017
2W7	27	8.0	14.9	0.160	2.22	0.0036	29	8.0	14.1	0.100	2.02	0.0020
6ML	27	8.0	15.0	0.308	2.22	0.0068	29	8.1	14.1	0.464	2.53	0.0117
JW10	28	8.0	15.2	0.209	2.17	0.0045	29	8.1	14.1	0.240	2.53	0.0061
JW12	28	8.0	15.0	0.161	2.17	0.0035	29	8.0	14.0	0.228	2.02	0.0046

Total and Unionized Ammonia Results for Marine Amphipod Tests

^a Values from Bower CE and Bidwell, JP. 1978. Ionization of Ammonia in Seawater: Effects of Temperature, pH and Salinity. Journal of Fisheries Research Board of Canada 35:1012-1016.

^b When a %unionized ammonia value is not available for a certain pH or salinity, the value closest to the pH or salinity is used. S:\Toxicology/2-11/2-11-965 (Misc Sediment)\B Jacques Whitford Amphipods and Neanthes\Total and Unionized Ammonia Results for Amphipod Tests

LABORATORY RECORD BOOK

DATT.

PAGE NUMBER:

981

PROIECT NUMBER:

Project #: 2-11-0965B Company: Jacques Whitford Contact: Janine Beckett

Ε

S

IN

		Sample	NH ₂	e.
BCR #	Sample	Date	mg N/L	mg/L
060224L-01	Amphipods Day 0 Control M	24-Feb-2006	0.023	
060224L-02	Amphipods Day 0 JW1	24-Feb-2006	0.224	
060224L-03	Amphipods Day 0 JW2	24-Feb-2006	0.235	
060224L-04	Amphipods Day 0 JW3	24-Feb-2006	0.217	
060224L-05	Amphipods Day 0 JW4	24-Feb-2006	0.257	
060224L-06	Amphipods Day 0 JW5	24-Feb-2006	0.198	
060224L-07	Amphipods Day 0 JW6	24-Feb-2006	0 157	
060224L-08	Amphipods Day 0 JW7	24-Feb-2006	0,160	· · · · · · · · · · · · · · · · · · ·
060224L-09	Amphipods Day 0 JW9	24-Feb-2006	0 208	·
060224L-10	Amphipods Day 0 JW10	24-Feb-2006	0.209	
060224L-11	Amphipods Day 0 JW12	24-Feb-2006	0.161/214	· · · · · · · · · · · · · · · · · · ·
060224L-12	Amphipods Day 0 Control M	24-Feb-2006		(0.20
060224L-13	Amphipods Day 0 Control M Jul	24-Feb-2006		
)60224L-14	Amphipods Day 0 JW2	24-Feb-2006		20.20
60224L-15	Amphipods Day 0 JW3	24-Feb-2006		40.20
60224L-16	Amphipods Day 0 JW4	24-Feb-2006		0.20
60224L-17	Amphipods Day 0 JW5	24-Feb-2006		(0.20
60224L-18	Amphipods Day 0 JW6	24-Feb-2006		40.20
60224L-19	Amphipods Day 0 JW7	24-Feb-2006	·	<u> </u>
60224L-20	Amphipods Day 0 JW9	24-Feb-2006		10.20
60224L-21	Amphipods Day 0 JW10	24-Feb-2006		40.20
60224L-22	Amphipods Day 0 JW12	24-Feb-2006		60.20
)ate Analyzed:			FIEB . 24/06	Narch 8/06
			· · · · · · · · · · · · · · · · · · ·	
QC				
TRUE			0.103	··· ··· ···
Found			0.098	
Initials			±1	11
est Methods:			5330 / 5331	
				····· ····

TADODATE

)OK

UMBER:

211

Project #: 2-11-0965B Company: Jacques Whitford Contact: Janine Beckett

RCRI

BCR # Sample Date mg NL 060306C-01 Amphipods Day 10 Control M1 6-Mar-2006 20.01 000306C-02 Amphipods Day 10 Control M1 6-Mar-2006 - 00 060306C-02 Amphipods Day 10 Control M2 6-Mar-2006 - 00 060306C-03 Amphipods Day 10 Control M2 6-Mar-2006 - 00 060306C-04 Amphipods Day 10 Control M2 6-Mar-2006 - 00 060306C-05 Amphipods Day 10 Control M2 6-Mar-2006 - 00 060306C-06 Amphipods Day 10 Control M1 6-Mar-2006 - 00 060306C-07 Amphipods Day 10 JW1 6-Mar-2006 - 00 060306C-07 Amphipods Day 10 JW2 6-Mar-2006 - 00 060306C-08 Amphipods Day 10 JW2 6-Mar-2006 - 00 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 - 00 060306C-11 Amphipods Day 10 JW3 6-Mar-2006 - 00 060306C-12 Amphipods Day 10 JW4 6-Mar-20	mg/L
060306C-01 Amphipods Day 10 Control M1 6-Mar-2006 20.001 060306C-02 Amphipods Day 10 Control M1 6-Mar-2006 — D 060306C-03 Amphipods Day 10 Control M2 6-Mar-2006 — D 060306C-04 Amphipods Day 10 Control M2 6-Mar-2006 — C 060306C-05 Amphipods Day 10 Control M2 6-Mar-2006 — C 060306C-05 Amphipods Day 10 Control M2 6-Mar-2006 — C 060306C-06 Amphipods Day 10 Control M1 6-Mar-2006 — C 060306C-07 Amphipods Day 10 Control M2 6-Mar-2006 — C 060306C-08 Amphipods Day 10 JW2 6-Mar-2006 — C 060306C-09 Amphipods Day 10 JW2 6-Mar-2006 — C 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — C 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — C 060306C-11 Amphipods Day 10 JW4 6-Mar-2006 — C 060306C-12	
060306C-02 Amphipods Day 10 Control M1 6-Mar-2006 — D 060306C-03 Amphipods Day 10 Control M2 6-Mar-2006 ∠ O • O 1	500
060306C-03 Amphipods Day 10 Control M2 6-Mar-2006 ∠0·01 060306C-04 Amphipods Day 10 Control M2 6-Mar-2006 — ∠ 060306C-05 Amphipods Day 10 JW1 6-Mar-2006 — ∠ 060306C-06 Amphipods Day 10 Control M1 JW1 6-Mar-2006 — ∠ 060306C-06 Amphipods Day 10 Control M1 JW1 6-Mar-2006 — ∠ 060306C-07 Amphipods Day 10 JW2 6-Mar-2006 — ∠ 060306C-08 Amphipods Day 10 JW2 6-Mar-2006 — ∠ 060306C-09 Amphipods Day 10 JW3 6-Mar-2006 — _ 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — _ 060306C-11 Amphipods Day 10 JW4 6-Mar-2006 — _ 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — _ 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — _ 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — _ 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 _ _ 060306C-16	
060306C-04 Amphipods Day 10 Control M2 6-Mar-2006 — (2 060306C-05 Amphipods Day 10 JW1 6-Mar-2006 — (2 060306C-06 Amphipods Day 10 Control M1 JW1 6-Mar-2006 — (2 060306C-07 Amphipods Day 10 JW2 6-Mar-2006 — (2 060306C-08 Amphipods Day 10 JW2 6-Mar-2006 — (2 060306C-09 Amphipods Day 10 JW2 6-Mar-2006 — (2 060306C-09 Amphipods Day 10 JW3 6-Mar-2006 — (2 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — (2 060306C-11 Amphipods Day 10 JW3 6-Mar-2006 — (2 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — (2 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — (2 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — (2 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — (2 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — (2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<u> </u>
060306C-05 Amphipods Day 10 JW1 6-Mar-2006 C 060306C-06 Amphipods Day 10 Gentrel M1 JW1 6-Mar-2006 C 060306C-07 Amphipods Day 10 JW2 6-Mar-2006 C 060306C-08 Amphipods Day 10 JW2 6-Mar-2006 C 060306C-09 Amphipods Day 10 JW2 6-Mar-2006 C 060306C-09 Amphipods Day 10 JW3 6-Mar-2006 C 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 C 060306C-11 Amphipods Day 10 JW4 6-Mar-2006 C 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 C 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 C 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 C 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 C 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 C 060306C-16 Amphipo	7.246
060306C-06 Amphipods Day 10 Centrel M1 JW 6-Mar-2006 — C 060306C-07 Amphipods Day 10 JW2 6-Mar-2006 0 · 2·2·4 0 060306C-08 Amphipods Day 10 JW2 6-Mar-2006 — 060306C-09 Amphipods Day 10 JW3 6-Mar-2006 — 060306C-09 Amphipods Day 10 JW3 6-Mar-2006 — 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — 060306C-11 Amphipods Day 10 JW3 6-Mar-2006 — 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — 060306C-15 Amphipods Day 10 JW6 6-Mar-2006 — 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 —	·
060306C-07 Amphipods Day 10 JW2 6-Mar-2006 0 · 2.2.4 060306C-08 Amphipods Day 10 JW2 6-Mar-2006 —	.254
060306C-08 Amphipods Day 10 JW2 6-Mar-2006 — 060306C-09 Amphipods Day 10 JW3 6-Mar-2006 O. 16 • 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — • 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — • 060306C-11 Amphipods Day 10 JW4 6-Mar-2006 — • 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — • 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — • 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — • 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — • 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — • 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 — • 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 — •	<u> </u>
060306C-09 Amphipods Day 10 JW3 6-Mar-2006 0. 167 060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — 6 060306C-11 Amphipods Day 10 JW4 6-Mar-2006 0. 0.070 6 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — 6 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — 6 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — 6 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — 6 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — 6 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 — 6 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 — 6	6.533
060306C-10 Amphipods Day 10 JW3 6-Mar-2006 — 0 060306C-11 Amphipods Day 10 JW4 6-Mar-2006 0.070 0 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — 0 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — 0 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 — 0 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — 0 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — 0 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 — 0	
060306C-11 Amphipods Day 10 JW4 6-Mar-2006 0.070 060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 0.04 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 — 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 —	0.39 <u>3</u>
060306C-12 Amphipods Day 10 JW4 6-Mar-2006 — 060306C-13 Amphipods Day 10 JW5 6-Mar-2006 • • 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — • 060306C-15 Amphipods Day 10 JW5 6-Mar-2006 — • 060306C-15 Amphipods Day 10 JW6 6-Mar-2006 • • 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 • •	<u></u>
060306C-13 Amphipods Day 10 JW5 6-Mar-2006 0.104 060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — 060306C-15 Amphipods Day 10 JW6 6-Mar-2006 — 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 —	0.315
060306C-14 Amphipods Day 10 JW5 6-Mar-2006 — 060306C-15 Amphipods Day 10 JW6 6-Mar-2006 0.082 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 —	
060306C-15 Amphipods Day 10 JW6 6-Mar-2006 0.082 060306C-16 Amphipods Day 10 JW6 6-Mar-2006 —	0 242
060306C-16 Amphipods Day 10 JW6 6-Mar-2006	
	0.375
060306C-17 Amphipods Day 10 JW7 6-Mar-2006 0. 00	
060306C-18 Amphipods Day 10 JW7 6-Mar-2006	0.375
060306C-19 Amphipods Day 10 JW9 6-Mar-2006 0. 464	·
060306C-20 Amphipods Day 10 JW9 6-Mar-2006 -	0.381
060306C-21 Amphipods Day 10 JW10 6-Mar-2006 0.240	
060306C-22 Amphipods Day 10 JW10 6-Mar-2006 —	TD.2
060306C-23 Amphipods Day 10 JW12 6-Mar-2006 0.2.28	
060306C-24 Amphipods Day 10 JW12 6-Mar-2006 -	0.313
Date Analyzed: Hare. 6/06	ol Maroz
Found 0.103	
Initials Hr.	AS
Test Methods: 5330 / 5331	
	· · · · · · · · · · · · · · · · · · ·

Vizon SciTec

Marine Amphipod 10 Day Acute Survival Sediment Test Aeration Checks

Client # & Name: 128 Jacques Whitten

Start Date & Time: 06 Feb 24 の 14:50

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

	Day -1	Day 0	1	2	3	4	2	9	7	ω	6	10
Date	06 R633	De Rebay	abbebse	92 403 90	06 Feb 27	06 Feb 28	1 100 Fuls 2 2	06 Mar 07	50 M 25 M 30	planeroy	06 Mar cs	CE Merca.
Early AM		>	>	с. н. У	>	>	>	>		CM2		
Mid-day			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	>	>		US V	>	>	~~~~		>
Late PM	\geq	>	\setminus	7	>	>	>	V GL	191	5	,]	
· ·												

Comments:

9 2 6 g 9 4 5 9 0 17.1.C 13.6.0 0 13.9°C Airline plocked on replicate JUJ E. DO: 8.4 @ 21.19 Time. 8:37 . DO: 8.5 @ 14.1.C 8:24 DD: 8.1 (2) DO: 8.3 @ 14.9 °C Time: 8:37 8:19 DO: 8.6 @ 14.2.2 8:24 . DO: 8.0 8.2 @ 12:00 DO: 13.50 v, ð-ΓĊ) Do 8.1 (2) 8:20 JU 5 MEasure @ JUN Of MEASIANC (a) ති වැති Â 9 Airlin blocked on replicate Just E @ æ ₹ @ 12:00 @ 14:15 9 2 1 9 blucked on replicate Jul 2 ? JW 6 A also airline burked. an replicate CTL 1M-B blocked on replicate on reolicate Jiat D 20 HALINE PLOCK blocked BLOCK Arctine blocked AIRLINE Airhae ANTIN ANLINE Ole fro Mar 1 06-Feb-27 Mar 02 MARCJ 30 <u>_</u>

N:\BIOASSAY\FORMS\Marine Amphipods\Amphipod aeration checks Version 2

Vizon SciTecMarine Amphipod 10 Day Acute Survival Sediment TestVancouver, BCRecord of Aeration and Test Observations

Client # & Name: 128 Jacques wh: Hord

Start Date and Time: OGRED 24 @ 14:50

Sample ID: <u>JW1-12</u>

Vizon #: 060210J

Sediment Description

(e.g. colour, texture, homogeneity, presence of plants, animals & tracks or burrows of animals):

Date	Rep.	Comments (e.g. not aerating, DO levels (if not aerating), daily airline checks etc.)	Analyst
OF Mar Db	N28	3 worm (nearther like) found in Sandle	05
de Mar ub	JU-3A	Camphipad Summer in overhing water	
	:		
			ļ
·····			
		·	
			ļi

Vizon SciTec Inc. Marine Amphipod 10 Day Acute Survival Sediment Test Vancouver, BC Length Measurements

Client # & Name: #128 Jacques Whitford

Vizon #: Various

Sample ID: Various

Species: Eohaustorius estuarius

Start Date and Time: 2006-Feb-24

Organism Lot #: SE060222

End Date: 2006-Mar-6

Lengths at Beginning of Test

Marine	Length
Amphipod #	(mm)
1	3.00
2	4.00
3	3.50
4	3.00
5	3.00
6	4.00
7	4.00
8	4.00
9	3.00
10	3.00
11	4.00
12	4.00
13	4.00
14	4.00
15	3.00
16	3.00
17	3.00
18	3.00
19	4.00
20	3.50
Average	3.50
SD	0.49
Analyst	K Serben

Average must be 3-5 mm (Environment Canada 1992, ASTM 2003, PSEP 1995)

Vizon SciTec Inc. Marine Amphipod 10 Day Acute Survival Sediment Test Vancouver, BC Length Measurements

Client # & Name: 128 Jacquesulh?	Hord Vizon #:
Sample ID:	species: E. estusius
Start Date and Time: 06-Feb - 24	Organism Lot #: DRO6022
End Date: 06 Mar-16	SE060222

Lengths at Beginning of Test

Marine	Length
Amphipod #	(mm)
1	3
2	4
3	3.5
4	Ň
5	3
6	4
7	4
8	4
9	3
10	3
11	<u> </u>
12	4
13	4
14	Ч
15	
16	3
17	3
18	3
19	4
20	3,5
Average	#DIV/0!
SD ⁻	#DIV/0]
Analyst	KSeihen

Average must be 3-5 mm (Environment Canada 1992, ASTM 2003, PSEP 1995)

Randomization Chart for Amphipod Tests Use the coloured dots to find appropriate concentrations

| Control | Control A White | Control B White | Control B White
1 A White | Control B White
1 A White
1 B White | Control B White
1 A White
1 B White
2.5 A White | Control B White
1 A White
1 B White
2.5 A White
2.5 B White | Control B White
1 A White
1 B White
2.5 A White
2.5 B White
6.5 A White | Control B White
1 A White
1 B White
2.5 A White
6.5 A White
6.5 B White
6.5 B White | Control B White
1 A White
1 B White
2.5 A White
2.5 B White
6.5 A White
6.5 A White
16 A White | Control B White
1 A White
2.5 A White
2.5 B White
6.5 B White
6.5 B White
16 A White
16 B White | Control B White
1 A White
2.5 A White
2.5 B White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 A White
16 A White
16 A White | Control B White
1 A White
2.5 A White
2.5 B White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 A White
16 B White
16 B White
16 B White
16 White | Control B White
1 A White
1 B White
2.5 A White
2.5 B White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 A White
16 B White
16 B White
16 B White
16 B White | Control B White
1 A White
2.5 A White
2.5 B White
6.5 A White
6.5 B White
6.5 B White
16 A White
16 B White
16 B White
16 B White
16 B White
16 B White
16 B White
 | ControlBWhite1AWhite1BWhite2.5AWhite2.5BWhite6.5BWhite6.5BWhite16BWhite40AWhite40BWhite40BWhite | ControlBWhite1AWhite1BWhite2.5AWhite2.5BWhite6.5BWhite16AWhite16BWhite40AWhite40BWhite40BWhite | Control B White
1 A White
1 B White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 B White
16 B White
16 B White
16 B White
16 B White
 | Control B White
1 A White
1 B White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 B White
16 B White
16 B White
40 A White
40 A White | Control B White
1 A White
2.5 A White
2.5 B White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
40 A White
40 A White
40 B White | Control B White
1 A White
2.5 A White
2.5 B White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
40 A White
40 A White
40 B White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 B White
16 B White
16 B White
16 A White
16 B White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 A White
16 B White
40 A White | Control B White
1 A White
2.5 A White
2.5 B White
6.5 A White
6.5 B White
6.5 B White
16 A White
16 White
17 White
18 White
19 White
10 White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
40 A White
40 A White
40 B White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
16 A White
16 B White
16 B White
16 B White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 B White
16 A White
16 B White
16 B White
16 B White
 | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 B White
16 A White
16 B White
16 B White
16 A White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 B White
40 A White
40 B White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
40 A White
40 A White
40 B White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
40 A White
40 A White
40 A White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
16 A White
16 B White
16 B White
16 B White
 | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
16 B White
16 B White
16 B White
16 B White | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 A White
16 B White
16 A White
16 A White
16 A White | Control B White
1 A White
6.5 A White
6.5 B White
6.5 B White
6.5 B White
16 A White
16 A White
16 B White
40 B White
40 B White
 | Control B White
1 A White
2.5 A White
6.5 B White
6.5 B White
6.5 B White
16 B White
16 B White
16 A White
16 B White
16 B White
16 A White |
|--|-----------------|-----------------|------------------------------|---|--|---|--|---|---|--|--|--|---
--|---|--
---|--|--|--|---
--|---|---|---|---|---|---
---	---	--
--		
10 Control	10 Uontroi	11 Control
 | 11
22
12
4
4
55
6
55
6
55
6
55
4
0
40
7
40
40
40 | 11 Control
12 1 12 1 12 1
12 14 2.5
9 16
6 5
7 16
7 40
7 40 | 11 Control
22 1
33 55 1
6 55
9 16
7 40
7 40
7 40
 | 11 Control
22 1 255
33 6.5
9 16
6 40
7 40
7 40 | 11
22
33
55
55
55
55
55
7
255
7
20
10
25
5
7
40
7
40
40
40
40
40
40
40
40
40
40
40
40
40 | 11
22
23
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
55
25
2 | 11
22
3
3
3
5
5
5
5
5
5
5
5
5
7
4
0
5
5
5
7
1
1
2
5
5
7
1
1
2
5
5
7
1
1
2
5
5
7
1
1
2
5
5
7
1
1
2
7
1
1
2
7
1
2
5
5
7
1
1
2
7
1
2
5
5
5
5
5
5
5
5
7
1
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 11 Control
22 1 255
3 3 555
5 4 6
6 55
7 6
6 16
7 4 4 0
7 4 6
7 | 11
22
33
55
55
55
55
7
7
7
6
55
7
7
6
55
7
7
6
55
7
7
6
55
7
7
7
6
7
6
 | 11
22
25
25
25
25
25
25
25
25
25
25
25
25 | 11
22
23
23
24
25
25
25
25
25
25
25
25
25
25 | 11
22
25
25
25
25
25
25
25
25
25
25
25
25 | 11
22
5
5
5
5
5
5
5
5
5
5
5
7
1
2
5
5
7
1
1
2
5
5
7
1
1
2
5
5
7
1
1
2
5
5
7
1
1
2
5
5
7
1
1
2
1
2
5
5
5
7
1
1
2
1
2
5
5
5
7
1
1
2
1
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 11
22
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 1122
122
122
122
122
122
122
122 | 11
22
23
23
23
23
23
23
23
23
23
 | 112
122
122
122
122
122
122
122 | 112
122
122
122
122
122
122
122 | 112
122
122
122
122
122
122
122 |
1122255521
12222555
12222
12222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
122
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1222
1 | Control
C C C C C C C C C C C C C C C C C C C |
| | | | Yellow 2 | rellow 12
Yellow 12 | Yellow 12
Yellow 8
Yellow 8 | Yellow 2
Yellow 12
Yellow 8
Yellow 12
Yellow 1 | Yellow 2
Yellow 12
Yellow 8
Yellow 3
C. Green 3 | Yellow 22
Yellow 12
Yellow 8
Yellow 12
C. Green 3
C. Green 3 | reliow 22
Yellow 12
Yellow 8
Yellow 3
C. Green 3
C. Green 5
C. Green 5 | reliow 22
Yellow 12
Yellow 8
Yellow 3
C. Green 3
C. Green 4
C. Green 9
C. Green 9 | rellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fe | (ellow 22
(ellow 12
(ellow 33
(ellow 33
(. Green 3
(. G | fellow 2
fellow 2
fellow 12
fellow 8
fellow 3
fellow 3
fellow 3
fellow 6
freen 5
f. Green 9
f. Green 9
f. Green 0
f. Gree | fellow 22
fellow 32
fellow 33
fellow 33
f. Green 3
f. Green 3
f. Green 9
f. Green 9
f. Green 9
f. Green 9
f. Green 0
f. G | reliow fellow 2
fellow 12
fellow 3
fellow 3
f. Green 3
f. Green 4
f. Green 9
f. Green 9
f. Green 9
f. Green 9
f. Green 0
f. Green 0 | reliow fellow 2
fellow 12
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
freen 3
foreen 3
foren | fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fello
fell | fellow 2
fellow 3
fellow 12
fellow 8
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
freen 3
freen 3
freen 3
freen 3
freen 3
o Green 6
o Green 6
o Green 0
o Gr | reliow 2
fellow 2
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
freen 3
freen 3
freen 3
freen 3
o Green 6
o Green 7
d fellow 12
teat 12
d fellow 12
freen 12 | reliow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
freen
fellow
freen
freen
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7 | rellow 2
fellow 2
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
freen 3
6
Green 6
6
Green 6
6
Green 6
6
Green 6
6
Green 6
6
Green 6
6
Green 6
6
Green 6
6
Green 6
7
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf | rellow 2
fellow 2
fellow 3
fellow 12
f. Green 3
f. Green 5
f. Green 5
f. Green 5
f. Green 6
f. Gree | reliow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
freen
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7 | reliow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
freen
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | rellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
freen
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6 | rellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
freen
6
Green
6
Green
6
Green
6
Green
6
Green
7
7
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Beige
Beige | rellow 2
fellow 2
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
fellow 3
freen 5
o Green 6
o Green 6
o Green 6
bereaf
Leaf
Leaf
Leaf
Leaf
Beige
Beige | rellow 2
fellow 2
fellow 8
fellow 8
fellow 3
fellow 3
fellow 3
fellow 3
fellow 8
fellow 3
fellow 3
fellow 3
freen 5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7 | Reliow 2 Yellow 2 Yellow 12 Yellow 3 Yellow 4 Yellow 3 Yellow 4 Yellow 4 Yellow 5 | rellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
fellow
freen
foreen
o Green
o Green
o Green
o Green
o Green
o Green
been
been
beer
Beige
Beige
Beige | Reliave
(ellow
(ellow
2
fellow
2
Careen
2
Careen
2
Careen
2
Careen
3
2
Careen
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2 | Reliave
(ellow
fellow
fellow
fellow
fellow
fellow
a fellow
a fellow | Reliave
(ellow
(ellow
(ellow
(ellow
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Caree | Reliave
(ellow
(ellow
(ellow
(ellow
Cellow
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Caree | Reliave
(ellow
(ellow
(ellow
(ellow
(ellow
(ellow
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Careen
Caree |
| y circw | Yellow | Yellow | | Yellow | Yellow
Yellow | Yellow
Yellow
e | Yellow
Yellow
Dk. Green | Yellow
Yellow
Dk. Green
Dk. Green | Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green | Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green | Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green
Dk. Green | Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green
Dk. Green | Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green
e Dk. Green
Glo Green | Yellow
Yellow
DK. Green
DK. Green
DK. Green
DK. Green
Glo Green
Glo Green
Glo Green | Yellow
Yellow
Vellow
Dk. Green
Dk. Green
Dk. Green
Creen
Careen
Glo Green
Glo Green
Glo Green | Yellow
Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Careen
Glo Green
Glo Green
Glo Green
Glo Green | Yellow
Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green
Glo Green
Glo Green
Glo Green
Glo Green
Glo Green | Aellow
Yellow
Vellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green
Glo Green
Glo Green
Glo Green
Glo Green
Glo Green
Glo Green | Yellow
Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green
Clo Green
Glo Green
Glo Green
Glo Green
Leaf | Yellow
Yellow
Yellow
Pk. Green
Dk. Green
Dk. Green
Dk. Green
Glo Green
Glo Green
Glo Green
Leaf
Leaf | Yellow
Yellow
Yellow
Jk. Green
Dk. Green
Dk. Green
Dk. Green
Glo Green
Glo Green
Glo Green
Leaf
Leaf
Leaf | Yellow
Yellow
Yellow
Dk. Green
Dk. Green
Dk. Green
Dk. Green
Clo Green
Glo Green
Glo Green
Leaf
Leaf
Leaf | Yellow Yellow Yellow Yellow Yellow Yellow Yellow Green Dk. Green Dk. Green Dk. Green Cio Green Glo Green Glo Green Glo Green Leaf Leaf Leaf Leaf | Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow Green Dk. Green Dk. Green Bk. Green Glo Green Glo Green Glo Green Leaf Leaf Leaf Leaf Leaf Leaf | Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow Green Dk. Green Dk. Green Glo Green Glo Green Glo Green Leaf Leaf Leaf Leaf Leaf Leaf Leaf Seige | Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow Green Dk. Green Dk. Green Glo Green Glo Green Glo Green Glo Green Eaaf Leaaf Leaaf Leaaf Beige | Yellow Yellow Yellow Yellow Yellow Yellow Yellow Yellow Green Dk. Green Dk. Green Glo Green Glo Green Glo Green Glo Green Leaf Leaf Leaf Leaf Leaf Beige Beige | Yellow
Yellow
Yellow
Yellow
Yellow
Yellow
Glo Green
Glo Green
Glo Green
Leaf
Leaf
Leaf
Leaf
Beige
Beige
Beige | Yellow Glo Green Glo Green Glo Green Glo Green Glo Green Glo Green Leaf Leaf Leaf Leaf Leaf Beige Beige Beige | Y ellow Y ellow Y ellow Y ellow Y ellow Y ellow Y Green Careen Carea Careen Careen Careen< | Presentation of the second sec | Presentation of the second sec | Presentation of the second sec | Yellow
Yellow
Yellow
Yellow
Yellow
Yellow
Yellow
Glo Green
Glo Green
Glo Green
Glo Green
Leaf
Leaf
Leaf
Leaf
Beige
Beige
Blue
Blue
Blue | Yellow
Yellow
Vellow
Vellow
Yellow
Yellow
Yellow
Glo Green
Glo Green
Glo Green
Clo Green
Leaf
Leaf
Leaf
Beige
Beige
Blue
Blue
Blue
Blue |
| (@ | 3 | ں
ا | D | • |) LU | E
Measure | E
Measure
A | В
В | меаsure
В В
С | Measure
D C B A | мeasure
ПССВА
Кеа | Measure
В
С
Мeasure
Measure | Measure
В
Мeasure
Мeasure
A | Measure
Measure
Measure
 | Measure
Measure
Measure
C D C D C B A
Measure | меазиге
Меазиге
Меазиге | меазиге
Меазиге
Меазиге
Меазиге
 | Measure
Measure
Меаsure
Measure | Measure
Measure
Measure
Мeasure
A | Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure
 | Measure
Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure
Measure
Measure
 | Measure
Measure
Measure
Measure
Measure
Measure
Measure
A | Measure
Measure
Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure
Measure | Measure
Measure
Measure
Measure
Measure
Measure
Measure
 | Measure
Measure
Measure
Measure
Measure
Measure
Measure
Measure |
| Ontri-2M | | Cntrl-2M | Cntrl-2M | • | Cntrl-2M | Cntrl-2M
Cntrl-2M | Cntrl-2M
Cntrl-2M
JW6 | Cntrl-2M
JW6
JW6 | Cntri-2M
JW6
JW6
JW6 | Cntrl-2M
JW6
JW6
JW6
JW6
JW6 | Cntrl-2M
JW6
JW6
JW6
JW6
JW6
JW6
JW6 | Cntrl-2M
JW6
JW6
JW6
JW6
JW6
JW6
JW6
JW6 | Cntrl-2M
JW6
JW6
JW6
JW6
JW6
JW6
JW6
JW7 | Cntrl-2M
JW6
JW6
JW6
JW6
JW6
JW7
JW7
JW7
 | Cntrl-2M
Cntrl-2M
JW6
JW6
JW6
JW6
JW7
JW7
JW7
JW77 | Cntrl-2M
Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7 | Cntrl-2M
JW6
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
 | Cntrl-2M
JW6
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW9
JW9
JW9 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW9
JW9
JW9
JW9
JW9 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW9
JW9
JW9
JW9
JW9 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW9
JW9
JW9
JW9
JW9
 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW9
JW9
JW9
JW9
JW9
JW9
JW9 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9
JW9 | Cntrl-2M
JW6
JW6
JW7
JW7
JW7
JW7
JW9
JW9
JW10
JW10
JW10
JW10
JW10
JW10
JW10
JW10 | Cntrl-2M
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 | Cntrl-2M
JW6
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 | Cntrl-2M
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 | Cntrl-2M
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
 | Cntrl-2M
JW6
JW6
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 |
| 2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3 | • | 99 | 38
C | 18
C | | 29
C | 59
46
C | 59
46
10 | 59
46
11 | 59
46
11
21
20
20 | 20
20
20
20
20
20
20
20
20
20
20
20
20
2 | 59
4 6
7 0 1 1 0 4
7 0 1
7 0 0 | 59
59
11
20
20
20
20
20
50
50
50
50
50
50
50
50
50
50
50
50
50 | 59
66
11
20
20
20
20
50
50
50
50
50
50
50
50
50
50
50
50
50
 | 59
59
70 11 10
70 12 10
70 100 | 59
59
70 11 - 20
36
72 0 11 - 20
36
37
20
50
50
50
50
50
50
50
50
50
50
50
50
50 | 59
57
57
53
57
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 59
65
65
72
65
72
65
72
65
72
85
86
72
85
72
85
72
85
72
85
72
85
72
85
72
85
73
73
73
74
75
75
75
75
75
75
75
75
75
75
75
75
75 |
59
46
10
11
11
11
10
65
33
65
33
65
33
65
57
65
57
65
57
65
57
65
57
65
57
66
57
66
57
66
57
70
66
57
70
70
66
70
70
70
70
70
70
70
70
70
70
70
70
70 | 59
57
57
53
36
57
57
57
50
57
50
57
50
50
50
50
50
50
50
50
50
50
50
50
50 | 59
56
57 0 17 - 20 1 10
22
22
23 0 52
57 0 17 - 20
22
22
22
22
22
22
22
23
23
25
20
20
25
20
20
20
20
20
20
20
20
20
20
20
20
20 | 59
46
72
65
73
65
73
65
73
65
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 59
46
10
11
10
11
10
11
10
10
11
10
10
10
10 | 59
46
10
11
10
11
10
11
10
11
10
10
10
10
10 | 59
59
57
57
56
58
57
53
36
57
57
50
57
50
57
50
50
50
50
50
50
50
50
50
50
50
50
50 | 59
56
56
56
57
3
57
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 59
59
57
33
56
57
33
57
56
57
37
57
57
57
57
57
57
57
57
57
57
57
57
57 |
59
59
57
57
56
57
57
56
57
57
56
57
57
57
57
57
57
57
57
57
57
57
57
57 | 59
59
59
57
50
57
57
56
56
57
57
57
56
57
57
57
57
56
57
57
57
58
57
59
59
50
53
59
50
53
50
53
50
50
50
50
50
50
50
50
50
50
50
50
50 | 59
59
56
57
56
56
57
57
56
57
57
56
57
57
56
57
57
56
57
57
56
57
57
57
57
56
57
57
56
57
57
57
57
57
57
57
57
57
57
57
57
57 | 55
57
58
58
57
58
57
57
58
57
57
58
57
57
58
57
57
58
57
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
57
58
58
58
58
58
58
58
58
58
58
58
58
58
 | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 7 4 5 6 6 7 9 9 2 7 2 9 7 9 7 9 7 9 7 9 7 9 7 9 7 | 59
59
57
57
57
58
57
58
57
57
57
58
57
57
58
57
59
59
50
57
59
50
57
50
57
50
57
50
50
50
50
50
50
50
50
50
50
50
50
50 | 59
59
59
50
56
57
57
57
56
57
57
57
57
57
57
57
57
57
57
57
57
57
 |
| 5 | 3ío Yeliow | to Yellow | alo Yellow | Glo Yellow | | Glo Yellow | Glo Yellow
Red | Gio Yellow
Red
Red | Gio Yellow
Red
Red | Gio Yellow
Red
Red
Red | Gio Yellow
Red
Red
Red
Red | Gio Yellow
Red
Red
Red
Red
Red | Gio Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue | Gio Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
 | Gio Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue | Gio Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue | Gio Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
 | Gio Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue | Gio Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue | Glo Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
 | Glo Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Orange | Glo Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Orange
Orange | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Orange
White
White | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Vhite
White | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Orange
White
White
White | Glo Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Orange
White
White
White | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Orange
White
White
White
 | Glo Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Orange
White
White
White
White
White
White
White | Glo Yellow
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Orange
Vhite
White
White
White
White
White
White
White
Corange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange
Orange | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Dk. Blue
Orange
Orange
Vhite
White
White
White
White
White
White
White
Sed-Orange | Glo Yellow
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Crange
Orange
Orange
White
White
White
White
White
White
White
White
Sed-Orange
Red-Orange
 | Glo Yellow
Red
Red
Red
Red
Red
Red
Red
Dk. Blue
Dk. Blue
Crange
Orange
Orange
Orange
Vhite
White
White
White
White
White
White
White
Corange
Corange
Corange
Sed-Orange
Red-Orange
Red-Orange |
| a 2 | 5 (K | | 15 | G | 1 | ы
С | e
G | G | en | en | ente | Surre Surre | |
 | | | mocus à sure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
asure
as
asure
asure
as
as
asure
as
as
as
as
as
as
as
as
as
as
as
as
as
 | easure
easure
easure
easure
easure | A A B A B A B A B A B A B A B A B A B A | | | |
 | | | | leasure
leasure
c m A A M M M M M M M M M M M M M M M M M | Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasure
Aeasur | leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsur |
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leasure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsure
leаsur | Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aasure
Aa | B A B B B B B B B B B B B B B B B B B B |
 | easure
Barane
DCBA
Barane
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bessure
Bess | |
| A Glo Ye | < 0 | ര
ഗ | ۵
۵ | u | L | Measun | Measu
A | Meas
A
B | Meas
B
C
B
C | D C B A B C | M C C B A S I
M C C B A S I | Mendo BAsir
Mendo Basir | |
 | Wea B C C B V | W W | ž ž
 | Σ Σ Σ | ž ž ž | ž ž ž | Σ Σ Σ | ž ž ž | Σ Σ Σ
 | Σ Σ Σ Σ | Σ Σ Σ Σ | Σ Σ Σ Σ | 2 2 2 2 | ~ ~ ~ ~ ~ | 2 2 2 2 | 2 2 2 2 2
 | | | | 2 2 2 2 2
 | |
| (1111-51VI) A (1510 YP) | intri-1M B (| htrl-1M C G | thri-1M D G | :ntrl-1M E | | htri-1M Measur | intri-1M Measu
JW1 A | intri-1M Meas
JW1 A
JW1 B | JW1 Meas
JW1 A
JW1 B
JW1 C | JW1 Meas
JW1 Meas
JW1 B
JW1 C
JW1 D | JW1 Meas
JW1 Meas
JW1 B
JW1 C
JW1 C
JW1 C | JW1 Measure JW1 Measure JW1 Measure JW1 D JW1 D JW1 JW1 Measure JW | JW1 Measure JW1 Measure JW1 Measure JW1 D JW1 D JW1 JW1 Measure JW2 Measure JW2 Measure JW2 A Measur | intri-1M Meas
JW1 Meas
JW1 JW1 Meas
JW2 Meas | JW1
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | intri-1M Mei
JW1
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | intri-1M Me
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | mtrl-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | ntrl-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | ntrl-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | 100
100
100
100
100
100
100
100 | ntrl-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW3 | 1000 multiplication with the second s | Mutri-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW3
JW2
JW3
M
JW3
M
JW3
M
JW3
M
JW3
M
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW1
JW1
JW1
JW1
JW1
JW1
JW1
JW1
JW1
JW1 | Intrl-1M Intrl-1M JW1 JW1 JW1 JW1 JW2 JW2 JW2 JW2 JW2 JW2 JW2 JW2 JW3 JW3 JW3 JW3 JW3 JW3 | Mutri-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | Mutri-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | ntrl-1M
JW1
JW1
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW4
JW4
JW4
JW4
JW4
JW4
JW4
JW7
JW7
JW7
JW7
JW7
JW1
JW1
JW1
JW1
JW1
JW1
JW1
JW1
JW1
JW1 | Intri-1M Intri-1M JW1 JW1 JW1 JW1 JW2 JW2 JW2 JW2 JW2 JW2 JW2 JW2 JW3 JW3 JW4 JW3 JW4 JW3 JW4 JW2 | Intri-1M Intri-1M JW1 JW1 JW1 JW1 JW2 JW2 JW2 JW2 JW2 JW2 JW2 JW2 JW3 JW3 JW4 JW3 JW4 JW3 JW4 JW2 JW4 JW3 JW4 JW3 | ntrl-1M
JW1
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW3
JW4
JW4
JW4
JW4
JW4
JW4
JW5
JW4
JW5
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7
JW7 | Intri-1M
JW1
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | Intri-1M
JW1
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | Mutri-1M
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 | Intri-1M
JW1
JW1
JW1
JW2
JW2
JW2
JW2
JW2
JW2
JW2
JW2 |

Vizon SciTe Vancouver, BC	ç		Marine	Amphipo Acclim	od 10 Day ation and	Acute Sui Holding	rvival Sec Condition	liment Te Is	st				
Species:	Eohau	startus	estu	zrius				Organ	ism Lot #:	SEOG	0225		
Date Collected:	0 G F	eb 2	0					# of O	rganisms:	1890			
Date Arrived:	00	eb 2'	K								7		
Upon Arrival:	Tempers	tture (°C):_	13.0	D'C). (mg/L):_	6		pH:	LL	Sali	nity (‰) :_	26	
Acclimation/Holdi	ng Condit	ions 🖈				. :							
Parameter	Day 0	Day 0)	Day 1	Day 1	Day 2	Day 2	Day 3	Day 3	Day 4	Day 4	Day 5	Day 5	
Date	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final	
рН		V2 8.0	· · ·			1.8~							
Temperature (°C)		14,8				14.7							-
D.O. (mg/L)		3.6	· · · ·			85							
Salinity (‰)		28											
Dead	6												
Inactive	Q		-										
Emerged	ତ												
Analyst	<i>A</i>	\mathcal{O}				\mathcal{C}							
	1	. //											
Parameter	Day 6	Day 6	Day 7	Day 7	Day 8	Day 8	Day 9	Day 9	Day 10	Day 10			
Date	Initial	Final	Initial	Final	Initial	Final	initial	Final	Initial	Final			
pH													
Temperature (°C)													
D.O. (mg/L)													
Salinity (‰)											Total	% Effected	
Dead													
Inactive													
Emerged													
Analyst													
50% H ₂ O Change	æ	Added	9 L fo	each	~ 40	Contoi	0 5,92	f pool	4) S	00 N O	ria)		
	Day O	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Dáy 10	•		
Date	Feb 22												
Analyst	A 20		1 										
	2												

.....

,

Biology:\Bioassay\Forms\Marine Amphipods\Acclimation.xls

2.4

.

Janet Pickard/BC Research/CA 03/30/2006 11:11 AM

To Kerrie Serben/BC Research/CA@BC Research

сс

bcc

Subject Fw: Eohaustorius estuarius, collected Feb. 20, 2006

Regards,

Janet Pickard Vizon SciTec Inc. Bioassay Manager 3650 Wesbrook Mall Vancouver, B.C. V6S 2L2

ph: (604) 224-4331 ext. 260 fax: (604) 224-0540 jpickard@vizonscitec.com http://vizonscitec.com ----- Forwarded by Janet Pickard/BC Research/CA on 03/30/2006 11:10 AM -----

"Douglas Swanston" <seacology@telus.net> 03/30/2006 11:09 AM

To "Janet Pickard" <jpickard@vizonscitec.com>

Subject Echaustorius estuarius, collected Feb. 20, 2006

Hello Janet,

Here is a summary of the collection activities for the first round of collections.

Collect amphipods Feb. 20, 2006

Amphipods collected per container = 110 amphipods each

Average collection mortalities per container = 3 amphipods per container

Salinity of water in containers = 28 ppt

Temperature of containers = 10 C.

Salinity of water at collection site = 30 ppt

Temperature of water at collection site = 7 C.

Amphipods delivered to Vizon Scitec Feb. 24, 2006 Douglas Swanston.vcf

22

Eohaustorius estuarius

96-hr Water-Only Reference Toxicant Control Chart using Cadmium (2*)

25.0

Date

20-D SURVIVAL & GROWTH TEST WITH NEANTHES ARENACEODENTATA

This section of the report contains a summary table of the test conditions (Table 4). Copies of the benchsheets (raw data) are inserted after the above table.

Table 4	Test Summary	Checklist –	 20-d Survival 	and Growth	Test with	Neanthes	arenaceodentata
---------	--------------	-------------	-----------------------------------	------------	-----------	----------	-----------------

Client Name/Location	Jacques Whitford Ltd. / Burnaby, BC
Testing Lab/Location	Vizon SciTec Inc. / Vancouver, BC
Sediment Sample	
Sample collection date (dd-mm-yr)	3-Feb-06 to 7-Feb-06
Sample Temperature upon Arrival	8.4 - 15.6°C
Storage Conditions	From receipt to test initiation, the samples were stored in a cold room that was at 4 ± 2 °C
Sediment and Pore Water	See "Sediment Sample Descriptions" in Sample Information section and
Characterisation	analytical reports, benchsheets in Sediment Characterisation section
Date (dd-mm-yr) & Time of Sample	9-Feb-06 @ 15:14 PM
Receipt at Lab	
Sample Information	
Sample Names	JW1 to JW7, JW9, JW10, and JW12
Type of Sample	Field collected sediments
Method of Collection	See "Toxicity Test Request" sheet or "Chain of Custody" form
Sample Collector	See "Toxicity Test Request" sheet or "Chain of Custody" form
Sample Volume	8 L
Sample Containers	8-L white food grade plastic buckets
Information on Labelling/Coding	See "Toxicity Test Request" sheet or "Chain of Custody" form
Date/Time for Test Start	24-Feb-06 @ 14:30
Date for Test Completion	06-Mar-16
Test Organisms Imported from	The EC document on the importation of test organisms was been followed
External Supplier	(September 1999)
Species & Source	<i>Neanthes arenaceodentata</i> supplied by D. Reish, California State University, Long Beach, CA
Age at start of test	Emergent juveniles (2-3 weeks post-emergence)
Unusual appearance, behaviour,	See "Acclimation and Holding Conditions" sheets
or treatment of organisms by	
supplier before shipping or by lab	
immediately preceding the test	
Temp. & DO of shipping water	See "Acclimation and Holding Conditions" sheets
immediately upon arrival	
Acclimation rate & procedure	Fresh seawater was gradually added over the three day holding period. See
Mantalita	"Acclimation and Holding Conditions" sheets for details.
mortality upon arrival and 24 h	See "Acclimation and Holding Conditions" sheets
Test Conditions & Essilition	
Tost method	Ruget Cound Estuary Dreamon 1005 D
	Conducting Laboratory Bioassays on Pugot Sound Sodimented Funder
	Overgound Eaboratory Dibassays on Fuger Sound Segments, JUVENIE

Toxicity and Chemical Testing on Marine Seawater and Sediment Samples for the Gateway Environmental Management (GEM) Marine Project Sampling Period: February 2006

· · · · · · · · · · · · · · · · · · ·	Polyabaata Sadimant Piasaaay
	Statio rangural Du ungeleurer and Do du de de
Test tomo sustants	Static-renewal, 3x weekly renewal, 20-day test
l est temperature	Water temperature ranged from 19.4°C to 21.6°C over the exposure period.
Dhata yani al	See "Test Conditions and Survival Data" sheets.
	24 hours light
l est vessels	1-L glass jars
Persons performing test	Kerrie Serben, Jackie Danisek, Nigel May, Christie MacKinley, Val Comeau, Corey Steckler, Janet Pickard, Glenn Lunty
Control/dilution water	Vancouver aquarium, from Burrard Inlet, 40-45' deep inlet, gravity sand filter w/sand mesh size 22, passed through UV steriliser
Type & quantity of chemicals added to control/dilution water	No chemicals were added
Control sediment	Same sediment as used for control sediment in the marine amphipod tests
Sediment volume and depth	175 mL & 4 cm
Overlying water volume and depth	775 mL & 9 cm depth
# of replicates per sample	5
# of organisms per test vessel	5
Manner & rate of renewal of	Three times weekly: ~30% (250 ml.) of solution was removed with by
overlying water	pouring off water. The water was replaced with new seawater
Water quality measurements	See "Test Conditions and Survival Data" sheets
Deviation from test method	There was nothing unusual about the test, no deviations from test method
	and no problems with this test.
Results	
Initial total biomass based on dry	0.67 ± 0.03 mg / worm
weight (mean ± SD)	
Initial pore water salinity	See "Pore Water Measurements" sheet in Sediment Characterisation
	section.
Endpoints	20-d percent survival for each replicate and mean $(\pm$ SD) for each test sediment.
	20-d total and individual biomass for each replicate and mean (\pm SD) for each
	test sediment.
	20-d individual growth rate for each replicate and mean (\pm SD) for each test
	sediment.
	See "Summary of Survival Results for <i>Neanthes arenaceodentata</i> Tests" and "Dry Weights of Polychaete Worms" sheet.
Endpoint results	Comparison with Laboratory Control
	There was no significant difference in survival, individual biomass, total
	biomass, or growth rate between the laboratory control and the test
	sediments ($p > 0.05$).
	Comparison with Reference Sediments
	No significant differences in survival, individual biomass, total biomass, or
	growth rate between either JW9 or JW10 and the test sediments ($p > 0.05$).

	Statistical analyses were conducted using ToxCalc Version 5.0.23j
QA/QC	
Test Validity Criteria	Control survival was >90% (mean pooled control survival was 100%). Control growth rate was > 0.38 mg/individual/day (mean pooled control growth rate was >1.00 mg/individual/day).
Ref tox test LC50 (95% CL) (mg Cd ²⁺ /L) and duration of test	9.7 (9.0, 10.3) Test duration was 96 hours.
Invalid Ref tox test?	No; the control survival was 100%. For the test to be valid the control survival should be \geq 90%. See "Control Chart" sheet.
Ref tox test historic mean & 2SD range (mgCd ²⁺ /L)	8.7; 2SD range: (5.2 – 12.1)
Date of ref tox test (y/m/d)	24-Feb-06
Organisms batch and conditions of ref tox test	Same batch of organisms used in the tests as for the reference toxicant; static, 96-h water-only test

Neanthes arenaceodentata Survival and Growth Test-Individual Biomass													
Start Date:	2/24/2006		Test ID:	NA128-01	06	irai ana	Sample I	D:	128-Jaco	ues Whitf	ord		
End Date:	3/16/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicoloav	Sample	Evpe:	SM-Sedir	M-Sediment			
Sample Date:			Protocol:	PSEP 199	77-Polvcha	letes	Test Spe	cies:	NA-Nean	thes aren:	aceodenta	ata .	
Comments:				199	5						200000000000000000000000000000000000000		
Conc-%	1	2	3 ·	4	5								
JW9	0.0194	0.0216	0.0226	0.0199	0.0196					· · · · · · · ·			
JW10	0.0234	0.0191	0.0223	0.0209	0.0155								
JW1	0.0217	0.0200	0.0186	0.0214	0.0214								
JW2	0.0233	0.0207	0.0236	0.0198	0.0199								
JM3	0.0223	0.0212	0.0189	0.0187	0.0216								
JW4	0.0155	0.0169	0.0249	0.0234	0.0179								
JW5	0.0178	0.0181	0.0214	0.0193	0.0241								
JW6	0.0192	0.0190	0.0178	0.0239	0.0228								
JW7	0.0176	0.0222	0.0204	0.0216	0.0181								
JW12	0.0184	0.0201	0.0243	0.0208	0.0215								
				Transform	n: Untran	sformed			1-Tailed				
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD			
JM3	0.0206	1.0195	0.0206	0.0194	0.0226	6.761	5	*					
JW10	0.0202	1.0000	0.0202	0.0155	0.0234	15.307	5						
JW1	0.0206	1.0176	0.0206	0.0186	0.0217	6.394	5	0.026	2.480	0.0037			
JW2	0.0215	1.0595	0.0215	0.0198	0.0236	8.624	5	-0.541	2.480	0.0037			
JW3	0.0205	1.0144	0.0205	0.0187	0.0223	8.071	5	0.070	2.480	0.0037			
JW4	0.0197	0.9735	0.0197	0.0155	0.0249	21.287	5	0.623	2.480	0.0037			
JW5	0.0202	0.9951	0.0202	0.0178	0.0241	13.100	5	0.330	2.480	0.0037			
JW6	0.0205	1.0136	0.0205	0.0178	0.0239	12.914	5	0.080	2.480	0.0037			
JW7	0.0200	0.9868	0.0200	0.0176	0.0222	10.335	5	0.442	2.480	0.0037			
JW12	0.0210	1.0383	0.0210	0.0184	0.0243	10.312	5	-0.254	2.480	0.0037			
Auxiliary Test	s						Statistic		Critical		Skew	Kurt	
Shapiro-Wilk's	Test indica	ites norma	al distribut	ion (p > 0.(D1)		0.96276		0.926		0.4055	-0.4807	
Bartlett's Test i	ndicates ec	jual varia	nces (p =	0.40)		8.38986		20.0902					
The control me	he control means are not significantly different (p = 0.80) 0.25996 2.306												
Hypothesis Te	lypothesis Test (1-tail, 0.05)								MSB	MSE	F-Prob	df	
Dunnett's Test	nnett's Test indicates no significant differences							0.17983	1.4E-06	5.6E-06	0.97804	8, 36	
Treatments vs	JW9												

		Nea	inthes are	enaceoden	tata Surv	ival and	Growth T	est-Indivi	dual Bion	lass		
Start Date:	2/24/2006		Test ID:	NA128-01	06		Sample I	D:	128-Jacq	ues Whitfe	ord	
End Date:	3/16/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample 1	Type:	SM-Sedir	nent		
Sample Date:			Protocol:	PSEP 195	n-Polycha	letes	Test Spe	cies:	NA-Nean	thes arena	aceodenta	ita
Comments:				199	5		•					
Conc-%	1	2	3	4	5							
JW9	0.0194	0.0216	0.0226	0.0199	0.0196							
JW10	0.0234	0.0191	0.0223	0.0209	0.0155							
JW1	0.0217	0.0200	0.0186	0.0214	0.0214							
JW2	0.0233	0.0207	0.0236	0.0198	0.0199							
JW3	0.0223	0.0212	0.0189	0.0187	0.0216							
JW4	0.0155	0.0169	0.0249	0.0234	0.0179							
JW5	0.0178	0.0181	0.0214	0.0193	0.0241							
JM6	0.0192	0.0190	0.0178	0.0239	0.0228							
JW7	0.0176	0.0222	0.0204	0.0216	0.0181							
JW12	0.0184	0.0201	0.0243	0.0208	0.0215							
				Transform	sformed			1-Tailed				
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
JW9	0.0206	1.0195	0.0206	0.0194	0.0226	6.761	5					
JW10	0.0202	1.0000	0.0202	0.0155	0.0234	15.307	5	*				
JW1	0.0206	1.0176	0.0206	0.0186	0.0217	6.394	5	-0.222	2.480	0.0040		
JW2	0.0215	1.0595	0.0215	0.0198	0.0236	8.624	5	-0.750	2.480	0.0040		
JW3	0.0205	1.0144	0.0205	0.0187	0.0223	8.071	5	-0.181	2.480	0.0040		
JW4	0.0197	0.9735	0.0197	0.0155	0.0249	21.287	5	0.334	2.480	0.0040		
JW5	0.0202	0.9951	0.0202	0.0178	0.0241	13.100	5	0.061	2.480	0.0040		
JW6	0.0205	1.0136	0.0205	0.0178	0.0239	12.914	5	-0.172	2.480	0.0040		
JW7	0.0200	0.9868	0.0200	0.0176	0.0222	10.335	5	0.166	2.480	0.0040		
JW12	0.0210	1.0383	0.0210	0.0184	0.0243	10.312	5	-0.482	2.480	0.0040		
Auxiliary Test	s					•	Statistic		Critical	.1	Skew	Kurt
Shapiro-Wilk's	Test indica	ates norm	al distribu	tion (p > 0.	01)		0.97067		0.926		0.18365	-0.5916
Bartlett's Test	indicates e	qual varia	nces (p =	0.51)		7.20771		20.0902				
The control me	eans are no	ot significa	intly differe	ent (p = 0.8		0.25996		2.306				
Hypothesis Te	ypothesis Test (1-tail, 0.05)								MSB	MSE	F-Prob	df
Dunnett's Test	nnett's Test indicates no significant differences								1.4E-06	6.5E-06	0.9852	8, 36
Treatments vs	JW10											

-		<u> </u>	leanthes a	arenaceod	lentata Su	rvival ar	nd Growth	Test-Tot	al Bioma	SS			
Start Date:	2/24/2006		Test ID:	NA128-01	06 .		Sample I	D:	128-Jacques Whitford				
End Date:	3/16/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample T	ype:	SM-Sedir	diment			
Sample Date:			Protocol:	PSEP 105	T-Polycha	letes	Test Spe	cies:	NA-Nean	thes arena	aceodenta	ita	
Comments:				199	5								
<u> Conc-%</u>	1	2	3	4	5								
JW9	0.0972	0.1078	0.1132	0.0997	0.0982								
JW10	0.1169	0.0955	0.1117	0.1047	0.0775								
JW1	0.1086	0.0998	0.0930	0.1070	0.1069								
JW2	0.1165	0.1035	0.1179	0.0992	0.0993								
JW3	0.1117	0.1058	0.0946	0.0933	0.1081								
JW4	0.0773	0.0845	0.1246	0.1172	0.0893								
JW5	0.0890	0.0907	0.1070	0.0964	0.1207								
JW6	0.0958	0.0949	0.0890	0.1194	0.1141								
JW7	0.0879	0.1110	0.1020	0.1082	0.0905								
JW12	0.0921	0.1003	0.1215	0.1041	0.1077			•					
				Transform			1-Tailed						
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD			
JW9	0.1032	1.0195	0.1032	0.0972	0.1132	6.761	5	*					
JW10	0.1012	1.0000	0.1012	0.0775	0.1169	15.307	5						
JW1	0.1030	1.0176	0.1030	0.0930	0.1086	6.394	5	0.026	2.480	0.0186			
JW2	0.1073	1.0595	0.1073	0.0992	0.1179	8.624	5	-0.541	2.480	0.0186			
JW3	0.1027	1.0144	0.1027	0.0933	0.1117	8.071	5	0.070	2.480	0.0186			
JW4	0.0986	0.9735	0.0986	0.0773	0.1246	21.287	5	0.623	2.480	0.0186			
JW5	0.1008	0.9951	0.1008	0.0890	0.1207	13.100	5	0.330	2.480	0.0186			
JW6	0.1026	1.0136	0.1026	0.0890	0.1194	12.914	5	0.080	2.480	0.0186			
JW7	0.0999	0.9868	0.0999	0.0879	0.1110	10.335	5	0.442	2.480	0.0186			
JW12	0.1051	1.0383	0.1051	0.0921	0.1215	10.312	5	-0.254	2.480	0.0186			
Auxiliary Test	S						Statistic		Critical		Skew	Kurt	
Shapiro-Wilk's	Test indica	ates norm	al distribut	tion (p > 0.	01)		0.96276		0.926		0.4055	-0.4807	
Bartlett's Test i	indicates ed	qual varia	nces (p =	0.40)			8.38986		20.0902				
The control me	ans are no	t significa	ntly differe	ent (p = 0.8	30)		0.25996		2.306				
Hypothesis Te	est (1-tail, (0.05)					MSDu	MSDp	MSB	MSE	F-Prob	df	
Dunnett's Test	indicates n	o signific	ant differe	nces			0.01856	0.17983	3.5E-05	0.00014	0.97804	8, 36	
Treatments vs	JW9	2											
					Dose-	Respons	e Plot						

Reviewed by: <u>KS</u>

Neanthes arenaceodentata Survival and Growth Test-Total Biomass												
Start Date:	2/24/2006		Test ID:	NA128-01	06		Sample I	D:	128-Jaco	ues Whitf	ord	
End Date:	3/16/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample ⁻	Гуре:	SM-Sedi	ment		
Sample Date:			Protocol:	PSEP 109	T-Polycha	aetes	Test Spe	cies:	NA-Nean	thes aren	aceodenta	ata
Comments:				191	1 5		-					
Conc-%	1	2	3	4	5							
JM3	0.0972	0.1078	0.1132	0.0997	0.0982							
JW10	0.1169	0.0955	0.1117	0.1047	0.0775							
JW1	0.1086	0.0998	0.0930	0.1070	0.1069							
JW2	0.1165	0.1035	0.1179	0.0992	0.0993							
JW3	0.1117	0.1058	0.0946	0.0933	0.1081							
JW4	0.0773	0.0845	0.1246	0.1172	0.0893							
JW5	0.0890	0.0907	0.1070	0.0964	0.1207							
JW6	0.0958	0.0949	0.0890	0.1194	0.1141							
JW7	0.0879	0.1110	0.1020	0.1082	0.0905							
JW12	0.0921	0.1003	0.1215	0.1041	0.1077							
		······································		Transform	sformed			1-Tailed				
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD		
JW9	0.1032	1.0195	0.1032	0.0972	0.1132	6.761	5					
JW10	0.1012	1.0000	0.1012	0.0775	0.1169	15.307	5	*				
JW1	0.1030	1.0176	0.1030	0.0930	0.1086	6.394	5	-0.222	2.480	0.0199		
JW2	0.1073	1.0595	0.1073	0.0992	0.1179	8.624	5	-0.750	2.480	0.0199		
JW3	0.1027	1.0144	0.1027	0.0933	0.1117	8.071	5	-0.181	2.480	0.0199		
JW4	0.0986	0.9735	0.0986	0.0773	0.1246	21.287	5	0.334	2.480	0.0199		
JW5	0.1008	0.9951	0.1008	0.0890	0.1207	13.100	5	0.061	2.480	0.0199		
JW6	0.1026	1.0136	0.1026	0.0890	0.1194	12.914	5	-0.172	2.480	0.0199		
JW7	0.0999	0.9868	0.0999	0.0879	0.1110	10.335	5	0.166	2.480	0.0199		
JW12	0.1051	1.0383	0.1051	0.0921	0.1215	10.312	5	-0.482	2.480	0.0199		
Auxiliary Test	S						Statistic		Critical		Skew	Kurt
Shapiro-Wilk's	Test indica	ates norma	al distribut	tion (p > 0.0	01)		0.97067		0.926		0.18365	-0.5916
Bartlett's Test i	indicates e	qual varia	nces (p =	0.51)			7.20771		20.0902			
The control me		0.25996		2.306								
Hypothesis Test (1-tail, 0.05)							MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	Innett's Test indicates no significant differences						0.01992	0.19678	3.5E-05	0.00016	0.9852	8, 36
Treatments vs	eatments vs JW10									-		•

ĩ

	Neanthes arenaceodentata Survival and Growth Test-Growth Rate Start Date: 2/24/2006 Test ID: NA128-0106 Start Date: 2/24/2006												
Start Date:	2/24/2006	i	Test ID:	NA128-01	06		Sample I	D:	128-Jaco	ues Whitf	ord		
End Date:	3/16/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample 3	Гуре:	SM-Sedir	ment			
Sample Date:			Protocol:	PSEP 19	T-Polycha	aetes	Test Spe	cies:	NA-Nean	thes aren	aceodenta	ita	
Comments:				191	25								
Conc-%	1	2	3	4	5								
1M8	0.9383	1.0449	1.0984	0.9635	0.9485								
JW10	1.1356	0.9211	1.0830	1.0132	0.7419								
JW1	1.0520	0.9640	0.8960	1.0362	1.0358								
JW2	1.1319	1.0011	1.1454	0,9585	0.9592								
JW3	1.0832	1.0249	0.9124	0.8991	1.0479								
JW4	0.7390	0.8116	1.2124	1.1381	0.8595								
JW5	0.8560	0.8731	1.0366	0.9309	1.1735								
JW6	0.9242	0.9157	0.8566	1.1601	1.1071					•			
JW7	0.8457	1.0761	0.9860	1.0485	0.8719								
JW12	0.8870	0.9691	1.1813	1.0073	1.0439								
				Transform	n: Untran	sformed			1-Tailed				
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	Ň	t-Stat	Critical	MSD			
JW9	0.9987	1.0202	0.9987	0.9383	1.0984	6.988	5	*					
JW10	0.9790	1.0000	0.9790	0.7419	1.1356	15.831	5						
JW1	0.9968	1.0182	0.9968	0.8960	1.0520	6.608	5	0.026	2.480	0.1856			
JW2	1.0392	1.0616	1.0392	0.9585	1.1454	8.902	5	-0.541	2.480	0.1856			
JW3	0.9935	1.0149	0.9935	0.8991	1.0832	8.343	5	0.070	2.480	0.1856			
JW4	0.9521	0.9726	0.9521	0.7390	1.2124	22.036	5	0.623	2.480	0.1856			
JW5	0.9740	0.9950	0.9740	0.8560	1.1735	13.551	5	0.330	2.480	0.1856			
JW6	0.9927	1.0141	0.9927	0.8566	1.1601	13.350	5	0.080	2.480	0.1856			
JW7	0.9656	0.9864	0.9656	0.8457	1.0761	10.694	5	0.442	2.480	0.1856			
JW12	1.0177	1.0396	1.0177	0.8870	1.1813	10.651	5	-0.254	2.480	0.1856			
Auxiliary Test	S						Statistic		Critical		Skew	Kurt	
Shapiro-Wilk's	Test indica	ates norma	al distribut	ion (p > 0.0	01)		0.96276		0.926		0.4055	-0.4807	
Bartlett's Test i	indicates e	qual varia	nces (p = l	0.40)	•		8.38986		20.0902				
The control means are not significantly different (p = 0.80) 0									2.306				
Hypothesis Te	est (1-tail, I	0.05)					MSDu	MSDp	MSB	MSE	F-Prob	df	
Dunnett's Test	ounnett's Test indicates no significant differences							0.18587	0.00348	0.01401	0.97804	8.36	
Treatments vs	JW9	-							_			-,	

ĺ

s. F

	Neanthes arenaceodentata Survival and Growth Test-Growth Rate												
Start Date:	2/24/2006		Test ID:	NA128-01	06		Sample I	D:	128-Jacq	ues Whitf	ord		
End Date:	3/16/2006		Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample 1	ype:	SM-Sedir	nent			
Sample Date:			Protocol:	PSEP 199	77-Polycha	ietes	Test Spe	cies:	NA-Nean	thes arena	aceodenta	ita	
Comments:				149	15								
Conc-%	1	2	3	4	5								
JW9	0.9383	1.0449	1.0984	0.9635	0.9485								
JW10	1.1356	0.9211	1.0830	1.0132	0.7419								
JW1	1.0520	0.9640	0.8960	1.0362	1.0358								
JW2	1.1319	1.0011	1.1454	0.9585	0.9592								
JW3	1.0832	1.0249	0.9124	0.8991	1.0479								
JW4	0.7390	0.8116	1.2124	1.1381	0.8595								
JW5	0.8560	0.8731	1.0366	0.9309	1.1735								
JW6	0.9242	0.9157	0.8566	1.1601	1.1071								
JW7	0.8457	1.0761	0.9860	1.0485	0.8719								
JW12	0.8870	0.9691	1.1813	1.0073	1.0439								
				Transform	sformed			1-Tailed					
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD			
JW9	0.9987	1.0202	0.9987	0.9383	1.0984	6.988	5						
JW10	0.9790	1.0000	0.9790	0.7419	1.1356	15.831	5	*					
JW1	0.9968	1.0182	0.9968	0.8960	1.0520	6.608	5	-0.222	2.480	0.1992			
JW2	1.0392	1.0616	1.0392	0.9585	1.1454	8.902	5	-0.750	2.480	0.1992			
JW3	0.9935	1.0149	0.9935	0.8991	1.0832	8.343	5	-0.181	2.480	0.1992			
JW4	0.9521	0.9726	0.9521	0.7390	1.2124	22.036	5	0.334	2.480	0.1992			
JW5	0.9740	0.9950	0.9740	0.8560	1.1735	13.551	5	0.061	2.480	0.1992			
JW6	0.9927	1.0141	0.9927	0.8566	1.1601	13.350	5	-0.172	2.480	0.1992			
JW7	0.9656	0.9864	0.9656	0.8457	1.0761	10.694	5	0.166	2.480	0.1992			
JW12	1.0177	1.0396	1.0177	0.8870	1.1813	10.651	5	-0.482	2.480	0.1992			
Auxiliary Test	S						Statistic		Critical		Skew	Kurt	
Shapiro-Wilk's	Test indic	ates norm	al distribu	tion (p > 0.0	01)		0.97067		0.926		0.18365	-0.5916	
Bartlett's Test			7.20771		20.0902								
The control me	eans are no	ot significa	untly differe	ent (p = 0.8	90)		0.25996		2.306				
Hypothesis Te	Hypothesis Test (1-tail, 0.05)							MSDp	MSB	MSE	F-Prob	df	
Dunnett's Test	innett's Test indicates no significant differences						0.19923	0.20351	0.00354	0.01613	0.9852	8, 36	
Treatments vs	JW10												

2

ĺ

http://www.com/article/												
	Neanthes arenaceodentata Survival and Growth Test-Individual Biomass											
Start Date:	2/24/2006	•	Test ID:	NA128-02	206		Sample ID	:	128-Jacqu	les Whitford		
End Date:	3/16/2006	5	Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample Ty	/pe:	SM-Sedim	nent		
Sample Date:			Protocol:	PSEP 19	H-Polycha	aetes	Test Spec	ies:	NA-Neant	hes arenace	odenta	ıta
Comments:	Comparis	son with La	aboratory	Control	1975							
Conc-%	1	2	3	4	5	6	7	8	9	10		
Control M	0.0210	0.0303	0.0222	0.0275	0.0225	0.0198	0.0201	0.0190	0.0195	0.0190		
Control D	0.0206	0.0190	0.0248	0.0188	0.0196	0.0234	0.0263	0.0186	0.0219	0.0209		
JW1	0.0217	0.0200	0.0186	0.0214	0.0214							
JW2	0.0233	0.0207	0.0236	0.0198	0.0199							
JW3	0.0223	0.0212	0.0189	0.0187	0.0216							
JW4	0.0155	0.0169	0.0249	0.0234	0.0179							
JW5	0.0178	0.0181	0.0214	0.0193	0.0241							
JW6	0.0192	0.0190	0.0178	0.0239	0.0228							
JW7	0.0176	0.0222	0.0204	0.0216	0.0181							
JW9	0.0194	0.0216	0.0226	0.0199	0.0196							
JW10	0.0234	0.0191	0.0223	0.0209	0.0155							
JW12	0.0184	0.0201	0.0243	0.0208	0.0215							
				Transform	n: Untran	sformed		Rank	1-Tailed			
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical			
Pooled	0.0217	1.0000	0.0217	0.0186	0.0303	14.924	20					
JW 1	0.0206	0.9478	0.0206	0.0186	0.0217	6.394	5	59.00	27.00			
JW2	0.0215	0.9869	0.0215	0.0198	0.0236	8.624	5	72.00	27.00			
JW3	0.0205	0.9448	0.0205	0.0187	0.0223	8.071	5	56.00	27.00			
JW4	0.0197	0.9067	0.0197	0.0155	0.0249	21.287	5	47.00	27.00			
JW5	0.0202	0.9269	0.0202	0.0178	0.0241	13.100	5	48.00	27.00			
JW6	0.0205	0.9441	0.0205	0.0178	0.0239	12.914	5	54.00	27.00			
JW7	0.0200	0.9192	0.0200	0.0176	0.0222	10.335	5	49.00	27.00			
JW9	0.0206	0.9496	0.0206	0.0194	0.0226	6.761	5	62.00	27.00			
JW10	0.0202	0.9314	0.0202	0.0155	0.0234	15.307	5	59.00	27.00			
JW12	0.0210	0.9671	0.0210	0.0184	0.0243	10.312	5	61.00	27.00			
Auxiliary Test	S						Statistic		Critical	S	kew	Kurt
Kolmogorov D	Test indica	ates non-n	ormal dist	tribution (p	<= 0.01)		1.10836		1.035	0.8	32635	0.84647
Bartlett's Test	indicates e	qual varia	nces (p =	0.36)	,		10.9892		23.2093			
The control me	eans are no	ot significa	ntly differe	ent (p = 0.6	64)		0.47822		2.10092			
Hypothesis Tr	est (1-tail	0.05)										

Wilcoxon Rank Sum Test indicates no significant differences Treatments vs Pooled Controls

Dose-Response Plot

		Ň	eanthes a	renaceod	lentata Su	rvival an	d Growth	Test-Tot	al Biomas	S		
Start Date:	2/24/2006		Test ID:	NA128-02	206		Sample ID):	128-Jacqu	ues Whitfor	d	
End Date:	3/16/2006	;	Lab ID:	VIZ-Vizon	SciTec To	oxicology	Sample Ty	ype:	SM-Sedin	nent		
Sample Date:			Protocol:	PSEP 199	1-Polycha	aetes	Test Spec	ies:	NA-Neant	hes arenac	eodenta	ata
Comments:	Comparis	on with La	boratory (Control	ていろ							
Conc-%	1	2	3	4	5	6	7	8	9	10		
Control M	0.1052	0.1515	0.1111	0.1376	0.1124	0.0990	0.1006	0.0951	0.0974	0.0950		
Control D	0.1028	0.0948	0.1238	0.0940	0.0980	0.1172	0.1315	0.0931	0.1096	0.1047		
JW1	0.1086	0.0998	0.0930	0.1070	0.1069							
JW2	0.1165	0.1035	0.1179	0.0992	0.0993							
JW3	0.1117	0.1058	0.0946	0.0933	0.1081							
JW4	0.0773	0.0845	0.1246	0.1172	0.0893							
JW5	0.0890	0.0907	0.1070	0.0964	0.1207							
JW6	0.0958	0.0949	0.0890	0.1194	0.1141							
JW7	0.0879	0.1110	0.1020	0.1082	0.0905							
JW9	0.0972	0.1078	0.1132	0.0997	0.0982					•		
JW10	0.1169	0.0955	0.1117	0.1047	0.0775							
JW12	0.0921	0.1003	0.1215	0.1041	0.1077							
		-		Transform	n: Untran	sformed	·····	Rank	1-Tailed			
Conc-%	Mean	N-Mean	Mean	Transform Min	n: Untran Max	sformed CV%	N	Rank Sum	1-Tailed Critical			
Conc-% Pooled	Mean 0.1087	N-Mean 1.0000	Mean 0.1087	Transform Min 0.0931	n: Untran Max 0.1515	sformed CV% 14.924	N 20	Rank Sum	1-Tailed Critical			
Conc-% Pooled JW1	Mean 0.1087 0.1030	N-Mean 1.0000 0.9478	Mean 0.1087 0.1030	Transform Min 0.0931 0.0930	n: Untran Max 0.1515 0.1086	sformed CV% 14.924 6.394	N 20 5	Rank Sum 59.00	1-Tailed Critical 27.00			
Conc-% Pooled JW1 JW2	Mean 0.1087 0.1030 0.1073	N-Mean 1.0000 0.9478 0.9869	Mean 0.1087 0.1030 0.1073	Transform Min 0.0931 0.0930 0.0992	n: Untran Max 0.1515 0.1086 0.1179	sformed CV% 14.924 6.394 8.624	N 20 5 5	Rank Sum 59.00 72.00	1-Tailed Critical 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3	Mean 0.1087 0.1030 0.1073 0.1027	N-Mean 1.0000 0.9478 0.9869 0.9448	Mean 0.1087 0.1030 0.1073 0.1027	Transform Min 0.0931 0.0930 0.0992 0.0933	n: Untran Max 0.1515 0.1086 0.1179 0.1117	sformed CV% 14.924 6.394 8.624 8.071	N 20 5 5 5 5	Rank Sum 59.00 72.00 56.00	1-Tailed Critical 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4	Mean 0.1087 0.1030 0.1073 0.1027 0.0986	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067	Mean 0.1087 0.1030 0.1073 0.1027 0.0986	Min 0.0931 0.0930 0.0992 0.0933 0.0773	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246	sformed CV% 14.924 6.394 8.624 8.071 21.287	N 20 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00	1-Tailed Critical 27.00 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4 JW5	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008	Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100	N 20 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW6	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026	Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890 0.0890	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1194	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914	N 20 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW6 JW6 JW7	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999	Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890 0.0890 0.0879	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1194 0.1110	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335	N 20 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW6 JW6 JW7 JW9	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192 0.9496	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032	Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890 0.0890 0.0879 0.0972	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1194 0.1110 0.1132	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335 6.761	N 20 5 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00 62.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW6 JW6 JW7 JW9 JW9	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192 0.9496 0.9314	Mean 0.1087 0.1030 0.1073 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012	Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890 0.0890 0.0879 0.0972 0.0975	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1194 0.1110 0.1132 0.1169	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335 6.761 15.307	N 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00 62.00 59.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW5 JW6 JW7 JW9 JW9 JW10 JW12	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1012 0.1051	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192 0.9496 0.9314 0.9671	Mean 0.1087 0.1030 0.1073 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1051	Min 0.0931 0.0930 0.0933 0.0773 0.0890 0.0890 0.0879 0.0972 0.0975 0.0921	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1194 0.1110 0.1132 0.1169 0.1215	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335 6.761 15.307 10.312	N 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00 62.00 59.00 61.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00			
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW5 JW5 JW5 JW5 JW5 JW5 JW5 JW5 JW10 JW10 JW12 Auxiliary Test	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1051 s	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192 0.9496 0.9314 0.9671	Mean 0.1087 0.1030 0.1073 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1051	Min 0.0931 0.0930 0.0933 0.0773 0.0890 0.0890 0.0879 0.0972 0.0975 0.0921	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1194 0.1110 0.1132 0.1169 0.1215	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335 6.761 15.307 10.312	N 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00 62.00 59.00 61.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00		Skew	Kurt
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW6 JW5 JW6 JW7 JW9 JW10 JW12 Auxiliary Test Kolmogorov D	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.1026 0.0999 0.1032 0.1012 0.1051 s Test indica	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192 0.9496 0.9314 0.9671 ates non-no	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1012 0.1051	Transform Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890 0.0879 0.0972 0.0972 0.0972 0.0972 0.0921	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1124 0.1109 0.1132 0.1169 0.1215	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335 6.761 15.307 10.312	N 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00 62.00 59.00 61.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00		Skew .82635	Kurt 0.84647
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW6 JW5 JW6 JW7 JW9 JW10 JW10 JW12 Auxiliary Test Kolmogorov D Bartlett's Test i	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1051 s Test indicates e	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192 0.9496 0.9314 0.9671 ates non-no qual varian	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1012 0.1051	Transform Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890 0.0879 0.0972 0.0972 0.0972 0.0972 0.0972 0.0972 0.0921	n: Untran Max 0.1515 0.1086 0.1179 0.1117 0.1246 0.1207 0.1124 0.110 0.1132 0.1169 0.1215	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335 6.761 15.307 10.312	N 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00 62.00 59.00 61.00	1-Tailed Critical 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00 27.00		<u>Skew</u> .82635	Kurt 0.84647
Conc-% Pooled JW1 JW2 JW3 JW4 JW5 JW6 JW5 JW6 JW7 JW7 JW9 JW10 JW12 Auxiliary Test Kolmogorov D Bartlett's Test i The control me	Mean 0.1087 0.1030 0.1073 0.1027 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1051 s Test indicates et andicates et ans are no	N-Mean 1.0000 0.9478 0.9869 0.9448 0.9067 0.9269 0.9441 0.9192 0.9496 0.9314 0.9671 ates non-no qual varian ot significar	Mean 0.1087 0.1030 0.1073 0.0986 0.1008 0.1026 0.0999 0.1032 0.1012 0.1051 0.1051	Transform Min 0.0931 0.0930 0.0992 0.0933 0.0773 0.0890 0.0879 0.0972 0.0972 0.0972 0.0971 0.0972 0.0972 0.0971 0.0921	n: Untran Max 0.1515 0.1086 0.1179 0.1177 0.1246 0.1207 0.1194 0.1110 0.1132 0.1169 0.1215 <= 0.01)	sformed CV% 14.924 6.394 8.624 8.071 21.287 13.100 12.914 10.335 6.761 15.307 10.312	N 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Rank Sum 59.00 72.00 56.00 47.00 48.00 54.00 49.00 62.00 59.00 61.00	1-Tailed Critical 27.00		Skew .82635	Kurt 0.84647

Wilcoxon Rank Sum Test indicates no significant differences Treatments vs Pooled Controls

(

<u>,</u>			Neanthes	arenaced	dentata S	urvival a	nd Growth	1 Test-Gr	owth Bate	<u> </u>	
Start Date:	2/24/2006	3	Test ID:	NA128-02	206		Sample ID);	128-Jaco	Jes Whitford	
End Date:	3/16/2006	3	Lab ID:	VIZ-Vizor	SciTec T	oxicology	Sample T	vpe:	SM-Sedin	nent	
Sample Date:			Protocol:	PSEP 19	91-Polycha	aetes	Test Spec	ies:	NA-Neant	hes arenaceodent	ata
Comments:	Comparis	son with La	aboratory	Control ^I	995		•				
Conc-%	1	2	3	4	5	6	7	8	9	10	
Control M	1.0182	1.4815	1.0776	1.3423	1.0902	0.9563	0.9724	0.9174	0.9400	0.9162	
Control D	0.9946	0.9141	1.2043	0.9060	0.9461	1.1384	1.2812	0.8977	1.0621	1.0134	
JW1	1.0520	0.9640	0.8960	1.0362	1.0358						
JW2	1.1319	1.0011	1.1454	0.9585	0.9592						
JW3	1.0832	1.0249	0.9124	0.8991	1.0479						
JW4	0.7390	0.8116	1.2124	1.1381	0.8595						
JW5	0.8560	0.8731	1.0366	0.9309	1.1735						
JW6	0.9242	0.9157	0.8566	1.1601	1.1071						
JW7	0.8457	1.0761	0.9860	1.0485	0.8719						
· JW9	0.9383	1.0449	1.0984	0.9635	0.9485						
JW10	1.1356	0.9211	1.0830	1.0132	0.7419						
JW12	0.8870	0.9691	1.1813	1.0073	1.0439						
				Transfor	m: Untran	sformed		Rank	1-Tailed		
Conc-%	Mean	N-Mean	Mean	Min	Max	CV%	N	Sum	Critical		
Pooled	1.0535	1.0000	1.0535	0.8977	1.4815	15.398	20				
JW1	0.9968	0.9462	0.9968	0.8960	1.0520	6.608	5	59.00	27.00		
JW2	1.0392	0.9864	1.0392	0.9585	1.1454	8.902	5	72.00	27.00		
JW3	0.9935	0.9430	0.9935	0.8991	1.0832	8.343	5	56.00	27.00		
JW4	0.9521	0.9038	0.9521	0.7390	1.2124	22.036	5	47.00	27.00		
JW5	0,9740	0.9246	0.9740	0.8560	1.1735	13.551	5	48.00	27.00		
JW6	0.9927	0.9423	0.9927	0.8566	1.1601	13.350	5	54.00	27.00		
JW7	0.9656	0.9166	0.9656	0.8457	1.0761	10.694	5	49.00	27.00		
JM9	0.9987	0.9480	0.9987	0.9383	1.0984	6.988	5	62.00	27.00		
JW 10	0.9790	0.9292	0.9790	0.7419	1.1356	15.831	5	59.00	27.00		
JW12	<u>1.0177</u>	0.9660	1.0177	0.8870	1.1813	10.651	5	61.00	27.00		
Auxiliary Test	s						Statistic		Critical	Skew	Kurt
Kolmogorov D	Test indica	ates non-n	ormal dist	ribution (p	<= 0.01)		1.10836		1.035	0.82635	0.84647
Bartlett's Test i	ndicates e	qual variar	nces (p = l	0.36)			10.9892		23.2093		
The control me	ans are no	t significa	ntly differe	ent (p = 0.6	64)		0.47822		2.10092		

Wilcoxon Rank Sum Test indicates no significant differences Treatments vs Pooled Controls

Dose-Response Plot

7

ł

Vizon SciTec Inc. Vancouver, BC

Summary of Survival Results for Neanthes arenaceodentata Tests

			Sample	Mean Survival	
Sample ID	Log in ID	# Surviving	Survival (%)	(%)	SD
Control M-1		5	100	100	0
Control M-1	-	5	100	Pooled	Pooled
Control M-1	-	5	100	100	0
Control M-1	÷	5	100		
Control M-1	-	5	100		
Control M-2	-	5	100	100	0
Control M-2	-	5	100		
Control M-2	-	5	100		
Control M-2	-	5	100		
Control M-2	-	5	100		
Control D-1	-	5	100	100	0
Control D-1	-	5	100	Pooled	Pooled
Control D-1	-	5	100	100	0
Control D-1	-	5	100		
Control D-1	-	5	100		
Control D-2	-	5	100	100	0
Control D-2	-	5	100		
Control D-2	-	5	100		
Control D-2	-	5	100		
Control D-2	-	5	100		
JW1	060210J-01	5	100	100	0
JW1	060210J-01	5	100		
JW1	060210J-01	5	100		
JW1	060210J-01	5	100		
JW1	060210J-01	5	100		
JW2	060210J-02	5	100	100	0
JW2	060210J-02	5	100		
JW2	060210J-02	5	100		
JW2	060210J-02	5	100		
JW2	060210J-02	5	100		
JW3	060210J-03	5	100	100	0
JW3	060210J-03	5	100		
JW3	060210J-03	5	100		
JW3	060210J-03	5	100		
JW3	060210J-03	5	100		
JW4	060210J-04	5	100	100	0
	060210J-04	5	100		
JW4	060210J-04	5	100		
JVV4	060210J-04	5	100		
J¥¥4		5	100		
JW5	060210J-05	5	100	100	0
JW5	060210J-05	5	100		
JVV5	060210J-05	<u>5</u>	100		
CVVL		5 E	100		
GVVC	0002103-05	<u> </u>	100		
JWG	060210J-06	5	100	100	0
	060210J-06	5	100		
JVVC	060210J-06	5	100		
JVVO	060210J-06	5	100		
JVVO	0002103-06	5	100		

S:\Toxicology\2-11\2-11-965 (Misc Sediment)\B Jacques Whitford Amphipods and Neanthes\ Summary of Survival Results for Neanthes Tests

KK 06 Apr 13 Page 1 of 2

Vizon SciTec Inc. Vancouver, BC

1

Summary of Survival Results for Neanthes arenaceodentata Tests

			Sample	Mean Survival	
Sample ID	Log In ID	# Surviving	Survival (%)	(%)	SD
JW7	060210J-07	5	100	100	0
JW7	060210J-07	5	100		
JW7	060210J-07	5	100		
JW7	060210J-07	5	100		
JW7	060210J-07	5	100		
JW9	060210J-09	5	100	100	0
JW9	060210J-09	5	100		
JW9	060210J-09	5	100		
JM9	060210J-09	5	100		
JW9	060210J-09	5	100		
JW10	060210J-10	5	100	100	0
JW10	060210J-10	5	100		
JW10	060210J-10	5	100		
JW10	060210J-10	5	100		
JW10	060210J-10	5	100		
JW12	060210J-12	5	100	100	0
JW12	060210J-12	5	100		
JW12	060210J-12	5	100		
JW12	060210J-12	5	100		
JW12	060210J-12	5	100		

KK OGAPT 13

S:\Toxicology\2-11\2-11-965 (Misc Sediment)\B Jacques Whitford Amphipods and Neanthes\ Summarv of Survival Results for Neanthes Tests

Page 2 of 2

Vizon SciTec Inc.

2

Client # / Name: #128 Jacques Whitford

Sample ID: <u>JW1-JW7, JW9, JW10, JW12</u> Maan Drv Weicht at Test Initiation (mo/wo

Dry Weights of Polychaete Worms

(

Start & End Date: 24-Feb-06 & 16-Mar-06

θer μ. Boart W/m Boart W/m Mem Term					-	אופמו טוץ איפוטוו מ	ון נפאר אווואמווטיו עוי	-fittiow./fit	0,07		
A 5 114760 128277 105.17 21.03 24.71 3.99 1.04 B 5 114301 128462 151.50 30.30 Pooled Pooled 714 C 5 114301 128462 117.13 22.22 3.85 1.346 C 5 114030 128068 137.56 27.22 2.09 3.85 1.340 A 5 1.14030 128048 137.56 2.77 2.47 1.49 A 5 1.14011 1.28746 97.35 19.02 1.369 1.36 D 5 1.14011 1.28746 97.35 19.02 1.369 0.99 D 5 1.14011 1.28746 97.35 19.02 1.49 0.49 0.99 D 5 1.14011 1.28746 97.35 19.02 1.40 0.99 0.99 D 5 1.14770 1.28766 94.76 19.35 <td< th=""><th>ů,</th><th>smroW # de</th><th>Boat Wt.</th><th>Boat & Worms Wt (a)</th><th>Wt. of Worms (mg)</th><th>Mean Wt./Worm (mg)</th><th>Mean Wt./Conc. (mg)</th><th>SD</th><th>Estimated Individual Growth Rate (mg/worm/d)</th><th>Mean Growth Rate (mɑ/worm/d)</th><th>as</th></td<>	ů,	smroW # de	Boat Wt.	Boat & Worms Wt (a)	Wt. of Worms (mg)	Mean Wt./Worm (mg)	Mean Wt./Conc. (mg)	SD	Estimated Individual Growth Rate (mg/worm/d)	Mean Growth Rate (mɑ/worm/d)	as
B C 113655 128065 15150 30.30 Poeled Poeled 14.8 C 6 1.14270 1.56442 111.11 22.22 22.09 3.85 1.137 F 5 1.1470 1.5573 112.37 2.247 2.247 1.46 A 5 1.1470 1.2573 1.12.37 2.247 2.049 1.040 A 5 1.14010 1.25736 91.05 9.010 9.010 9.010 A 5 1.14011 1.27746 97.35 19.47 1.040 2.012 0.02 C 5 1.1471 1.24153 94.97 18.99 Pooled Pooled 0.91 C 5 1.1473 1.24153 94.75 18.99 Pooled 2.010 0.24 C 5 1.1473 1.24156 94.75 18.99 Pooled 0.91 C 5 1.14710 1.22746 18.95 0.91		5	1.14760	1.25277	105.17	21.03	24.71	3.99	1.02	1.20	0.20
0 1 1 1 25.22 2.00 3.65 1.135 1 5 1.14270 1.26428 111.11 22.22 2.00 3.65 1.1427 1 5 1.14270 1.26428 1.37.68 27.52 1.147 1.14 1 5 1.14050 1.28028 1.87.58 2.7.52 1.14 1.14 1 5 1.14010 1.24150 96.90 1.9.02 1.9.02 0.9.9 1 5 1.14010 1.24150 96.50 1.9.02 2.0.66 0.9.9 1 5 1.14710 1.24150 94.97 1.8.99 2.0.6 0.9.9 1 5 1.14701 1.24160 93.95 18.99 2.0.6 0.9.9 1 5 1.14701 1.24160 93.95 18.97 2.0.6 0.0.9 1 5 1.1471 1.24160 93.95 19.95 2.0.6 0.0.9 1 <td< td=""><td></td><td>3 5</td><td>1.13655</td><td>1.28805</td><td>151.50</td><td>30.30</td><td>Pooled</td><td>Pooled</td><td>1.48</td><td>Pooled</td><td>Pooled</td></td<>		3 5	1.13655	1.28805	151.50	30.30	Pooled	Pooled	1.48	Pooled	Pooled
D 5 11,4270 12,8028 137,58 27,52 11,403 12,377 27,47 11,9 E 5 11,4036 12,8273 98,88 19,80 19,80 0,49 0,49 A 5 11,4101 12,4150 100,59 96,09 19,07 10,9 0,93 D 5 11,4101 12,8143 96,09 96,09 19,07 10,9 0,93 D 5 11,4101 12,8143 97,35 96,09 19,07 10,9 0,93 D 5 11,4731 12,8143 94,97 18,95 Pooled 24,66 0,93 D 5 11,4731 12,8136 93,36 13,83 94,97 13,83 94,97 10,97 D 5 11,4731 12,8136 94,97 18,95 Pooled 90,96 90,99 D 5 11,4731 12,8136 91,61 91,61 91,61 91,61 91,61		5	1.14331	1.25442	111.11	22.22	22.09	3.85	1.08	1.07	0.20
E 1 114036 122273 11237 2247 1		5 5	1.14270	1.28028	137.58	27.52			1.34		
A 5 114000 123868 98.86 19.80 19.41 0.49 0.49 B 5 114011 124150 100.59 20.12 7 0.9 C 5 114011 122443 94.35 19.47 7 0.9 C 5 114011 122443 94.97 18.99 20.61 0.03 L 5 114071 122843 94.97 18.99 20.65 0.03 L 5 114071 122843 94.97 18.99 20.66 20.63 0.9 L 6 11437 122843 94.97 18.99 20.66 20.63 0.9 L 5 114470 122346 93.36 13.74 21.46 0.09 L 6 11427 124126 93.36 11.47 22.84 20.66 20.3 L 14461 124126 93.12 18.69 20.61 20.61 L <td></td> <td>5</td> <td>1.14036</td> <td>1.25273</td> <td>112.37</td> <td>22.47</td> <td></td> <td></td> <td>1.09</td> <td></td> <td></td>		5	1.14036	1.25273	112.37	22.47			1.09		
B 5 114091 124150 100.59 2012 0 0 C 5 114041 124153 95.09 19.02 1 0 D 5 114316 122813 94.97 18.99 0 0 C 5 114316 122813 94.97 18.99 0 0 A 5 114770 122946 94.76 18.99 0.66 0.94 C 5 114770 123946 94.76 18.95 0.66 0.94 C 5 114770 123946 94.76 19.59 2.676 0.10 D 5 114274 12.4070 97.96 19.59 2.876 0.91 D 5 114274 12.4070 97.96 19.59 2.867 0.91 D 5 114361 12.4070 97.96 19.59 2.867 0.91 D 5 1148161 12.4070 97	Ĺ	A 5	1.14090	1.23988	98.98	19.80	19.48	0.49	96'0	0.94	0.02
(C) (C) <td></td> <td>3 5</td> <td>1.14091</td> <td>1.24150</td> <td>100.59</td> <td>20.12</td> <td></td> <td></td> <td>0.97</td> <td></td> <td></td>		3 5	1.14091	1.24150	100.59	20.12			0.97		
D 5 114011 123746 97.35 19.47 0.04 E 5 1.13316 1.23746 97.35 19.47 10.69 0.02 A 6 1.13216 1.23736 94.97 18.99 0.69 0.20 B 5 1.14770 1.23736 94.76 18.99 Pooled Pooled 0.91 C 5 1.14770 1.24726 93.36 18.79 21.36 2.46 0.91 A 5 1.14731 1.24726 93.36 18.79 21.36 2.67 1.20 A 5 1.14730 1.24726 93.35 18.79 2.13 2.67 1.20 A 5 1.14730 1.24726 93.12 1.95 2.14 1.2470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1470 2.1410 C 1.14830		5 5	1.14644	1.24153	95.09	19.02			0.92		
E 5 113316 122813 94.97 18.99 78.99 70.00 A 5 114270 125499 102.81 20.553 2.46 0.09 B 5 114470 123946 94.76 18.39 Pooled Pooled 0.01 C 5 114731 124736 93.95 18.39 2.67 0.031 C 5 114701 124736 93.16 93.46 2.244 2.67 0.14 A 5 114701 124070 97.96 13.44 2.244 2.66 0.15 L 5 114816 12.6532 111.719 2.244 2.86 1.14 L 6 114202 124012 93.16 2.0.34 2.0.56 0.01 L 6 114616 12.603 106.95 2.1.71 2.0.61 1.0.1 L 6 11462 12.603 106.95 2.1.71 2.0.61 1.0.1		5 5	1.14011	1.23746	97.35	19.47			0.94		
A 5 113216 125496 102.81 20.56 20.53 2.46 0.39 B 5 114470 123946 94.76 18.95 Pooled Pooled 0.31 C 5 114271 124126 93.36 18.379 21.39 2.67 0.14 C 5 114274 124070 97.36 19.59 2.67 0.14 C 5 114274 124060 97.96 19.59 2.67 0.36 A 5 114836 12.5983 131.47 2.829 17.14 2.0.96 C 5 114836 12.6983 131.47 2.829 2.1.4 2.0.96 C 5 114836 12.6983 131.47 2.829 1.1.4 2.0.96 C 5 114836 12.6963 108.56 21.31 2.0.61 1.0.6 C 6 11427 12.6053 108.56 21.31 2.0.61 1.0.6		ۍ ۲	1.13316	1.22813	94.97	18.99			0.92		
B 1.14470 1.23946 94.76 18.55 Pooled Pooled Pooled 0.01 C 5 1.16017 1.27395 123.78 24.76 21.39 267 1.120 D 5 1.14731 1.24126 93.95 18.79 21.39 2.051 A 5 1.14274 1.24126 93.95 18.79 2.224 2.86 1.141 A 5 1.14286 1.25053 117.19 2.234 2.86 1.141 A 5 1.14706 1.2012 93.12 18.65 2.191 1.26 0.90 A 5 1.14816 1.25050 104.69 2.034 2.86 1.141 A 5 1.14516 1.26057 109.56 2.171 20.61 1.05 A 5 1.14520 1.25057 106.93 2.139 2.67 1.06 A 5 1.14270 1.25057 106.93 2.131 2.04<		A 5	1.15218	1.25499	102.81	20.56	20.53	2.46	0.99	0.99	0.12
C 5 115017 127365 12376 24.76 21.39 2.67 1.20 D 5 114731 124126 93.95 18.79 21.39 2.67 1.20 F 5 114731 124126 93.95 18.79 2.69 0.91 A 5 114274 12.2603 117.19 2.8.29 11.41 B 5 114480 12.5632 113.17 2.6.29 2.1.41 1.1.4 C 5 114430 12.5632 131.47 2.6.29 2.1.4 2.0.6 1.1.4 L 6 1.14610 12.5632 108.55 2.1.71 2.0.61 1.0.6 L 6 1.14270 12.5657 108.55 2.1.71 2.0.61 1.0.1 L 6 1.14261 1.25050 108.55 21.71 2.0.61 1.0.6 L 6 1.14270 1.25050 106.97 21.39 2.1.4 2.0.61 1.0.		3 5	1.14470	1.23946	94.76	18.95	Pooled	Pooled	0.91	Pooled	Pooled
D 5 114731 124126 93.95 18.79 0.01 0.01 A 5 114274 124070 97.96 195.99 0.01 0.05 A 5 114274 124070 97.96 195.90 0.244 2.866 1.14 B 5 114803 125632 117.19 26.29 2.866 0.09 C 5 114568 12.26541 109.56 21.91 22.24 2.86 0.14 A 5 114518 12.26541 109.56 21.91 20.91 0.91 A 5 114518 12.26541 109.56 21.91 20.51 10.95 A 5 114218 12.2657 106.97 21.39 21.34 20.61 10.95 A 5 114221 12.3722 99.75 19.96 71.4 10.16 A 5 11427 12.2712 92.95 21.35 21.45 10.96 <t< td=""><td>Ĭ</td><td>5</td><td>1.15017</td><td>1.27395</td><td>123.78</td><td>24.76</td><td>21.39</td><td>2.67</td><td>1.20</td><td>1.04</td><td>0.12</td></t<>	Ĭ	5	1.15017	1.27395	123.78	24.76	21.39	2.67	1.20	1.04	0.12
E 5 11.4274 12.4070 97.96 19.59 11.4274 2.2070 97.96 11.41 A 5 11.1813 12.5532 117.19 23.44 2.366 11.41 B 5 11.41836 12.5532 117.19 23.44 2.366 11.41 C 5 11.41700 1.24012 93.12 18.62 7.96 11.42 D 5 11.41685 1.25541 109.56 21.91 7.9 0.90 A 5 11.4685 1.2567 108.55 21.91 7.9 7.9 A 5 11.4218 12.5367 108.55 21.71 20.61 1.0 A 5 11.4427 12.8367 90.75 19.95 7.1 1.0 A 5 11.4427 12.8367 106.97 21.39 7.1 1.0 A 5 11.4426 12.8367 106.97 21.3 21.45 1.0 1.0 </td <td></td> <td>5</td> <td>1.14731</td> <td>1.24126</td> <td>93.95</td> <td>18.79</td> <td></td> <td></td> <td>0.91</td> <td></td> <td></td>		5	1.14731	1.24126	93.95	18.79			0.91		
A51:138131.25532117.19 23.44 22.24 2.86 1.143 B51:143661.27983131.47 26.29 $2.8.4$ $2.8.6$ 1.128 C51:147001.2401293.1218.62 $1.9.6$ $1.2.93$ $1.2.93$ D51:145661.25541109.5621.91 $1.9.6$ $1.0.9$ C51:145611.25050104.69 20.94 $1.9.6$ $1.0.6$ A51:142181.25050104.69 20.94 $1.9.6$ $1.0.6$ A51:142181.25073108.55 21.71 20.61 1.32 A51:142181.2372299.75 19.95 $1.9.61$ $1.0.6$ D61:144271.2372292.95 21.331 21.44 $1.0.6$ A51:144281.25515 106.932 21.331 21.45 $1.0.6$ A51:144291.25515 106.932 21.332 21.45 $1.0.6$ A51:144291.25516 106.932 21.336 21.45 21.45 A51:144291.265210 116.64 23.54 1.66 1.166 A51:144031.23957 9920 19.86 21.45 1.66 1.06 A51:144031.26520 9920 9920 19.84 1.66 1.06 A51:144031.24837 105.84 21.47		5	1.14274	1.24070	97.96	19.59			0.95		
B 5 1.14836 1.27983 131.47 26.29 1 1.28 C 5 1.14700 1.24012 93.12 18.62 19.65 19.65 D 5 1.14565 1.25641 100.56 21.91 19.65 10.10 L 5 1.14565 1.25670 104.69 20.94 1.32 10.05 L 6 1.14218 1.25670 104.69 20.94 1.32 1.01 L 6 1.1427 1.25673 108.55 21.71 20.61 1.32 1.05 L 6 1.1427 1.23722 99.75 19.95 1.05 1.05 L 6 1.1427 1.23720 99.75 19.95 1.05 1.05 L 6 1.1427 1.23720 99.75 19.95 1.05 1.05 L 6 1.14261 1.23720 106.93 21.39 21.45 1.05 L 5	Ĺ	A 5	1.13813	1.25532	117.19	23.44	22.24	2.86	1.14	1.08	0.14
C 5 1:14700 1:24702 93:12 18.62 0		3 5	1.14836	1.27983	131.47	26.29			1.28		
D 5 1.14585 1.25541 109.56 21.31 1.0 1.0 F 5 1.14581 1.25050 104.69 20.34 1.32 1.01 A 5 1.14581 1.25050 104.69 20.34 1.32 1.05 B 5 1.14218 1.25073 108.55 21.71 20.61 1.32 1.05 C 5 1.1427 1.23812 99.75 19.95 1.05 1.05 C 5 1.1427 1.23812 99.75 19.95 1.05 1.05 C 5 1.1427 1.23812 99.75 19.95 1.05 1.06 F 5 1.1460 1.25215 106.93 21.39 1.06 1.04 A 5 1.1460 1.25215 106.93 21.39 1.06 1.04 A 5 1.14007 1.25216 106.93 21.39 1.06 1.04 B 5	Ľ	5	1.14700	1.24012	93.12	18.62			0:90		
E 5 1.14561 1.25050 104.69 20.94 1.32 1.01 A 5 1.14216 1.25073 108.55 21.71 20.61 1.32 10.65 B 5 1.14216 1.28172 99.75 19.95 19.95 1.05 C 5 1.1427 1.23722 92.95 18.59 0.76 0.90 D 5 1.1427 1.23722 92.95 18.59 0.76 0.90 C 6 5 1.1427 1.23722 92.95 18.59 0.76 0.90 A 5 1.14522 1.26267 106.93 21.39 0.76 0.76 A 5 1.1460 1.25216 106.93 21.39 0.76 1.164 A 5 1.1460 1.25216 106.93 23.31 21.45 1.85 C 6 1.1450 1.25216 106.93 23.31 21.45 1.85 C		5 5	1.14585	1.25541	109.56	21.91			1.06		
A 5 1:14216 1:25073 108:55 21.71 20.61 1.32 1.03 B 5 1:14216 1:23812 99.75 19.95 19.95 19.95 19.95 C 6 1:14127 1:23812 99.75 19.95 19.95 19.95 19.95 D 5 1:14960 1:25515 106.97 21.39 21.45 1.0 0.90 A 5 1:14522 1:25515 106.97 21.39 21.45 1.10 A 5 1:14522 1:25516 106.97 21.39 21.45 1.10 A 5 1:14077 1:25516 106.97 23.31 21.45 1.10 A 5 1:14073 1:25526 117.89 23.51 21.45 1.85 1.10 C 5 1:14073 1:265262 117.89 23.51 21.45 1.85 1.10 A 5 1:14473 1:265262 117.89 <td></td> <td>2</td> <td>1.14581</td> <td>1.25050</td> <td>104.69</td> <td>20.94</td> <td></td> <td></td> <td>1.01</td> <td></td> <td></td>		2	1.14581	1.25050	104.69	20.94			1.01		
B 5 1.13837 1.23812 99.75 19.95 19.95 0 0.96 C 6 1.14427 1.23722 92.95 18.59 0 0 0 D 5 1.14457 1.23722 92.95 18.59 0 0 0 D 5 1.14560 1.25657 106.93 21.39 0 0 0 A 5 1.14522 1.25215 106.93 21.39 0 0 0 A 5 1.14522 1.25215 106.93 21.39 0 0 0 0 A 5 1.14673 1.25215 106.93 23.58 1.85 1.13 D 5 1.14473 1.26262 117.89 23.58 1.85 1.15 D 5 1.14473 1.26262 117.89 23.45 1.85 1.15 D 5 1.14473 1.26262 117.89 23.45 1.85<		A 5	1.14218	1.25073	108.55	21.71	20.61	1.32	1.05	1.00	0.07
C 5 11.4427 1.23722 92.95 18.59 0 0.90 D 5 1.14427 1.23722 92.95 18.59 0 0 0.90 F 5 1.14960 1.25657 106.97 21.39 0 0 0 A 5 1.14522 1.25215 106.93 21.39 0 0 0 A 5 1.14522 1.25216 116.54 23.31 21.45 1.85 1.13 C 5 1.1407 1.26262 111.54 23.58 1.85 1.10 D 5 1.14473 1.26262 117.89 23.58 1.85 1.10 D 5 1.14473 1.26262 117.89 23.58 1.85 1.16 A 5 1.14473 1.26262 117.89 23.58 1.85 1.16 A 5 1.14430 1.23570 99.27 19.84 0 0.96		3	1.13837	1.23812	99.75	19.95			0.96		
D 5 1.14960 1.25657 106.97 21.39 0 1.04 E 5 1.14522 1.25215 106.93 21.39 0 1.04 A 5 1.14522 1.25216 106.93 21.39 0 1.04 B 5 1.14522 1.25210 116.54 23.31 21.45 1.85 1.135 B 5 1.14072 1.24353 103.46 23.31 21.45 1.85 1.136 C 5 1.14073 1.24353 103.46 23.58 21.45 1.16 D 5 1.14073 1.26262 117.89 23.58 0.96 1.16 A 5 1.14030 1.23357 99.20 19.84 20.54 1.66 1.16 A 5 1.14030 1.23357 99.27 19.86 20.54 1.66 0.16 A 5 1.14030 1.24337 105.84 21.17 10 20	_	5	1.14427	1.23722	92.95	18.59			0.90		
E 5 1.14522 1.25215 106.93 21.39 7 1.04 A 5 1.13556 1.25210 116.54 23.31 21.45 1.85 1.13 B 5 1.14507 1.24353 103.46 23.31 21.45 1.85 1.10 C 5 1.14007 1.24353 103.46 20.69 7.05 7.05 C 5 1.14073 1.26262 117.89 23.58 7.05 7.05 D 5 1.14030 1.23760 99.20 19.84 7.0 7.0 A 5 1.14030 1.23357 99.20 19.85 7.05 7.05 A 5 1.14030 1.23357 99.27 19.85 7.05 7.05 A 5 1.14030 1.24747 111.67 22.33 20.54 1.66 7.08 B 5 1.14253 1.24837 105.84 21.17 7.05 7.05 7	_	5	1.14960	1.25657	106.97	21.39			1.04		- 4-
A 5 1.13556 1.25210 116.54 23.31 21.45 1.85 1.13 B 5 1.14007 1.24353 103.46 20.69 7.14 7.10 C 5 1.14007 1.24353 103.46 20.69 7.14 7.00 C 5 1.14073 1.26262 117.89 23.58 7.0 7.0 D 5 1.13840 1.28760 99.20 19.84 7.0 7.0 A 5 1.13840 1.23357 99.27 19.85 7.0 7.0 A 5 1.14030 1.23357 99.27 19.85 7.0 7.0 A 5 1.14253 1.24747 111.67 22.33 20.54 1.66 7.08 B 5 1.14253 1.24837 105.84 21.17 1.66 7.08 C 5 1.14253 1.24837 105.84 21.17 1.66 7.0 D	-	ы 11	1.14522	1.25215	106.93	21.39			1.04		
B 5 1.14007 1.24353 103.46 20.69 0 1.00 C 5 1.14473 1.26262 117.89 23.58 0 1.15 D 5 1.13840 1.26262 117.89 23.58 0 0.96 E 5 1.13840 1.23760 99.20 19.85 0 0 0.96 A 5 1.14030 1.23957 99.27 19.85 0 0 0 0 A 5 1.14030 1.24837 105.84 21.17 0		A 5	1.13556	1.25210	116.54	23.31	21.45	1.85	1.13	1.04	0.09
C51.144731.26262117.8923.58 (1.15) (1.15) D51.138401.2376099.2019.84 (0.96) A51.140301.2395799.2719.85 (0.96) A51.140301.2395799.2719.85 (0.96) A51.142531.24747111.67 22.33 20.54 1.66 (0.96) B51.142531.24837105.84 21.17 (0.97) (0.97) C51.148261.2428594.59 18.92 (0.91) (0.91) D51.143561.22682 (0.814) 21.63 (1.66) (0.91) C51.143561.22682 (0.814) $(1.8.65)$ (1.66) (0.91) D51.144361.25250 (0.814) (21.63) (1.65) (0.91)		2	1.14007	1.24353	103.46	20.69			1.00		
D 5 1.13840 1.23760 99.20 19.84 0 0.96 E 5 1.14030 1.23957 99.27 19.85 0 <td></td> <td>ى د</td> <td>1.14473</td> <td>1.26262</td> <td>117.89</td> <td>23.58</td> <td></td> <td></td> <td>1.15</td> <td></td> <td></td>		ى د	1.14473	1.26262	117.89	23.58			1.15		
E51.140301.2395799.2719.8560.96A51.135801.24747111.6722.3320.541.661.08B51.142531.24837105.8421.1720.541.661.02C51.148261.2483594.5918.920.910.91D51.143561.2268293.2618.650.920.91C51.144361.2568293.2618.650.910.91		5 5	1.13840	1.23760	99.20	19.84			0.96		
A 5 1.13580 1.24747 111.67 22.33 20.54 1.66 1.08 B 5 1.14253 1.24837 105.84 21.17 7.06 1.02 C 5 1.14253 1.24837 105.84 21.17 7.0 7.0 1.02 C 5 1.14826 1.24835 94.59 18.92 7.0 7.0 7.0 7.0 D 5 1.13356 1.22682 93.26 18.65 7.0 <td></td> <td><u>ى</u></td> <td>1.14030</td> <td>1.23957</td> <td>99.27</td> <td>19.85</td> <td></td> <td></td> <td>0.96</td> <td></td> <td></td>		<u>ى</u>	1.14030	1.23957	99.27	19.85			0.96		
B 5 1.14253 1.24837 105.84 21.17 10 102 C 5 1.14826 1.24285 94.59 18.92 0.91 D 5 1.14826 1.24285 94.59 18.92 0.91 C 5 1.14826 1.22682 93.26 18.65 0.91 E 5 1.14336 1.25250 108.14 21.63 0.90		A 5	1.13580	1.24747	111.67	22.33	20.54	1.66	1.08	0.99	0.08
C 5 1.14826 1.24285 94.59 18.92 0.91 D 5 1.13356 1.22682 93.26 18.65 0.90 E 5 1.14436 1.25250 108.14 21.63 1.05		3	1.14253	1.24837	105.84	21.17			1.02		
D 5 1.13356 1.22682 93.26 18.65 0.90 E 5 1.14436 1.25250 108.14 21.63 1.05	_	2	1.14826	1.24285	94.59	18.92			0.91		
E 5 1.14436 1.25250 108.14 21.63 1.05		5	1.13356	1.22682	93.26	18.65			0.90		
	_	ى م	1.14436	1.25250	108.14	21.63			1.05	KKOLAA 13	

S:\Toxicology/2-11\2-11-965 (Misc Sediment)\B Jacques Whitford Amphipods and Neanthes\Dry Weights of Polychaete Worms

Page 1 of 2

Vizon SciTec Inc. Client # / Name: #128 Jacques Whitford

Dry Weights of Polychaete Worms

Ę

Sample ID: JW1-JW7, JW9, JW10, JW12

bicht at Tast Initiation (mc/worm)

Start & End Date: 24-Feb-06 & 16-Mar-06

					2	/ean Dry Weight a	tt Test Initiation (n	ng/worm):	0.67		
Sample ID	Rep	# Worms	Boat Wt. (g)	Boat & Worms Wt (g)	Wt. of Worms (mg)	Mean Wt./Worm (mg)	Mean Wt./Conc. (mg)	SD	Estimated Individual Growth Rate (mg/worm/d)	Mean Growth Rate (mg/worm/d)	SD
JW4	<	5	1.13850	1.21575	77.25	15.45	19.71	4.20	0.74	0.95	0.21
JW4	m	5	1.14165	1.22616	84.51	16.90			0.81		
JW4	ပ	5	1.14981	1.27440	124.59	24.92			1.21		
JW4	٥	5	1.14544	1.26260	117.16	23.43			1.14		
JW4	ш	5	1.14700	1.23630	89.30	17.86			0.86		
JW5	A	5	1.14191	1.23086	88.95	17.79	20.15	2.64	0.86	0.97	0.13
JW5	в	5	1.13870	1.22936	90.66	18.13			0.87		
JW5	ပ	5	1.14091	1.24792	107.01	21.40			1.04		
JW5		5	1.13453	1.23097	96.44	19.29			0.93		
JW5	ш	5	1.13800	1.25870	120.70	24.14			1.17		
JWG	۲	5	1.15127	1.24704	95.77	19.15	20.52	2.65	0.92	0.99	0.13
9WC	m	5	1.14913	1.24405	94.92	18.98			0.92		
JW6	ပ	5	1.15185	1.24086	89.01	17.80			0.86		
9MC	٥	2	1.14488	1.26424	119.36	23.87			1.16		
JW6	ш	5	1.15003	1.26409	114.06	22.81			1.11		
7WL	۷	5	1.14578	1.23370	87.92	17.58	19.98	2.07	0.85	26.0	0.10
JW7	B	5	1.15145	1.26241	110.96	22.19			1.08		
7WL	ပ	5	1.14695	1.24890	101.95	20.39			0.99		
JW7	٥	5	1.13970	1.24790	108.20	21.64			1.05		
7WL	ш	പ	1.13646	1.22700	90.54	18.11			0.87		
9WL	A	2	1.13192	1.22910	97.18	19.44	20.64	1.40	0.94	1.00	0.07
6ML	В	£	1.13995	1.24779	107.84	21.57			1.04		
9WL	ပ	5	1.14511	1.25830	113.19	22.64			1.10		
9WC	۵	5	1.13850	1.23820	99.70	19.94			0.96		
9WL	ш	പ	1.15048	1.24868	98.20	19.64			0.95		
JW10	A	5	1.14604	1.26295	116.91	23.38	20.25	3.10	1.14	0.98	0.15
JW10	B	£	1.14021	1.23567	95.46	19.09			0.92		
JW10	ပ	S	1.14706	1.25871	111.65	22.33			1.08		
JW10	۵	5	1.14750	1.25217	104.67	20.93			1.01		
JW10	ш	5	1.15078	1.22832	77.54	15.51			0.74		
JW12	A	5	1.13428	1.22633	92.05	18.41	21.02	2.17	0.89	1.02	0.11
JW12	m	ß	1.15014	1.25040	100.26	20.05			0.97		
JW12	ပ	5	1.13710	1.25858	121.48	24.30			1.18		
JW12	۵	ى ك	1.15079	1.25487	104.08	20.82			1.01		
JW12	ш	പ	1.13741	1.24515	107.74	21.55			1.04	KK (NAY 13	
S:\Toxi	icology/5	2-11/2-11-9(65 (Misc Sedin	nent)\B Jacques W	hitford Amphipods	and Neanthes\Dry W	eights of Polychaet	e Worms		Page 2	of 2

Vizon SciTec. Inc. Neanthes Initial Weights of Polychaete Worms

Client # & Name: <u>#128 Jacques Whitford</u>

Start Date and Time: 06-Feb-24 @ 14:30

Organism Lot #: DR060221

Weighing Dates: 06-Feb-23 and 06-Feb-25

Analyst(s): J Pickard, N May

Boat	1	#	Boat Wt.	Boat & Worms	Wt. of Worms	Mean Wt./Worm	Mean Wt./Sample	SD
#	Replicate	Worms	(g)	Wt. (g)	(mg)	(mg)	(mg)	
A	A	5	1.14534	1.14854	3.20	0.64	0.67	0.03
В	В	5	1.13762	1.14107	3.45	0.69		
C	С	5	1.13654	1.13996	3.42	0.68		
Analyst			JP	NM				

Vizon SciTec. Inc. Neanthes Initial Weights of Polychaete Worms

Client # & Name: :	#128 Jacques Whitfarc	Start Date and Time:	06-Feb-Z	<u>4 @ 14:30</u>	
Organism Lot #:	DRD60221	Weighing Dates:	06 Echo3	and 06-Feb-25	

Analyst(s): J. Pickard WMMY

Boat		#	Boat Wt.	Boat & Worms	Wt. of Worms	Mean Wt./Worm	Mean Wt./Sample	SD
#	Replicate	Worms	(g)	Wt. (g)	(mg)	(mg)	(mg)	
AN	A	5	1.14534	114854	0.00	0.00	0.00	0.00
BNZ	В	5	1,13762	1.14107	0.00	0.00		••
RNB	С	5	1.13654	1.13996	0.00	0.00		
Analyst			R	NM				
					· · · · · · · · · · · · · · · · · · ·			

Dried in 60°Coven

Vizon SciTec Inc. Vancouver, BC

Neanthes arenaceodentata 20-d Test Dry Weights of Polychaete Worms

Client	# & Name:	128 J	acau	es whiti	Ford Start D	Date and Time:	06-Feb-2"	1014:30	
Sa	mple Date:	06 Fel	0 63	,04and0	7	End Date:	06 - Mar - 10	0	
Sample	Received:	06-Fe	b-10	>	. w	eighing Dates:	TEMARIS 06	MARIT	
Orgai	nism Lot #:	DROG	022)		Vizon #	D/a	6210 T	
Ū	Sample ID.	T.) -	17	· · · · · · · · · · · · · · · · · · ·	Та	wCalo, Filo ID:	NINING	0106	
	Apply of (a) v	<u> </u>	VQ	Ja.		NOAIC. THE ID.	NAIOD	0,00	<u> </u>
	Anaiysi(s).	J. LUNIT	× ,×	aven					
Boat	Sample		#	Boat Wt.	Boat & Worms	Wt. of Worms	Mean Wt./Worm	Mean Wt./Sample	SD
#	ID	Replicate	Worms	(g)	Wt. (g)	(mg)	(mg)	(mg)	
1	(onlood N-1	A	5	1.14760	1.25277	0.00	#DIV/0!	#DIV/0!	#DIV/0!
2	Control H-1	В	2	1.13655	1.28805	0.00	#DIV/0!		
3	Control H-1	C	5	1.14331	1.25442	0.00	#DIV/0!		
4	Cartro 1M-1	D	2	1.14270	1,2803282	0.00	#DIV/0!		
5	Control H-1	E	5	1.1404330	1.25273	0.00	#DIV/0!		
6	Centrol M-2	A	5	1.14090	1.23998	0.00	#DIV/0!	#DIV/0!	#DIV/0!
7	Control M-2	В	5	1.14091	1.24150	0.00	#DIV/0!		
8	Control19-2	<u> </u>	5	<u>1.14644</u>	124153	0.00	#DIV/0!		
9	Cubrol1-2	D	5	1.14011	1.23746	0.00	#DIV/0!		
10	Cutro1M-2	E	5	1.13316	1.22813	0.00	#DIV/0!		
11	Controla	<u>A</u>	5	(.1522318	1.25499	0.00	#DIV/0!	#DIV/0!	#DIV/0!
12	Cintra D1	B	5	1 1447D	1.23946	0.00	#DIV/0!		
13	Control 0-1	С	5	1.1501	1.27395	0.00	#DIV/0!	<u></u>	
14	Controlly		5	/14731	1.241286 監	0.00	#DIV/0!		
15	Control 1)-1	<u>E</u>	5	1.14 2.74	1.24070	0.00	#DIV/0!		
16	Centro I D-Z	<u>A</u>	2	1.13813	1.25532	0.00	#DIV/0!	#DIV/0!	#DIV/0!
17	ControlD-Z	В	2	1.148436	1 27983	0.00	#DIV/0!		
18	Currieo 1 D-2	C	2	1.14700	124012	0.00	#DIV/0!		
19	Curtrol D-2		-2	1.14585	1,25541	0.00	#DIV/0!		
20	CubrolD-Z	E	2	1.14581	1.25050	0.00	#DIV/0!		
21	JUA	<u>A</u>	_5_	1 13202	1.22910	0.00	#DIV/0!	#DIV/0!	#DIV/0!
22	369	В		1.13112 11	1.24 179	0.00	#DIV/0!		
23	204	<u> </u>		1.1450	1.258.50	0.00	#DIV/0!		
24	<u>JW9</u>	<u> </u>	5	1.13850	1.23820	0.00	#DIV/0!		
20	309		2	1.15048	1.27868	0.00	#DIV/0!	#DIV/0	//D1\//01
20	JW1	A	5	1.14218	1.230 15	0.00	#DIV/0!	#DIV/0!	#DIV/0!
27	201	 	2	1.136731	1.2.5812	0.00	#DIV/0!		
20	ا برد		5	1.14427	1.25/22	0.00	#DIV/0!	. <u> </u>	
30			6	1.14460	1.45621	0.00	#DIV/0		
31	2	Δ.		1.17344	1 252 10	0.00	#DIV/0	#DIV/01	
32	5.12	<u> </u>	5	1.15000 1.11007	174752	0.00	#DIV/0	#DIV/01	#010/0:
33	Tin	<u> </u>	2	1100977	171720	0.00	#DIV/0		
34	Jus		5	11794L	173760	0.00	#DIV/0		
35	7.02	E	5	14070	1.23453	0.00	#DIV/0!		
71				1.157.02	45777	0.00	-		
72				1.14840	1.14826	0.00		_	
1		<u>A</u>		114760	1.25319	0.00	-	-	
Analyst			KS	(fL	GL				

* BE 22 ORY WE (4) 1.13995 GL OFMALIS

Vizon SciTec Inc. Vancouver, BC

ĺ

Neanthes arenaceodentata 20-d Test Dry Weights of Polychaete Worms

	004101, 24			-			26	1	
Client	# & Name:	128 J	acques	Whitford	Start D	ate and Time:	06 Feb @	14:30	
Sa	mple Date:	66 Feb	<u> </u>	04 and 07		End Date:	06 - Mar -	16	
Sample	Received:	06 F	eb · 1	0	We	eighing Dates:	DEMARIS		
Orga	nism Lot #:	DROG	022	١		Vizon #	060210	J	
;	Sample ID:	JW	1-12)	Т	oxalc. File ID:	NA128-0	0106	
	Analyst(s):	G.LUNT	Ϋ́	_,,	- 			,	
Boat	Sample		#	Boat Wt.	Boat & Worms	Wt. of Worms	Mean Wt./Worm	Mean Wt./Sample	SD
#	ID	Replicate	Worms	(g)	Wt. (g)	(mg)	(mg)	(mg)	
36	JW3	A	5	1.135480	1.24747	0.00	#DIV/0!	#DIV/0!	#DIV/0!
37	JW 3	В	5	1.14253	124837	0.00	#DIV/0!		
38	JW3	С	5	1.14826	1.24285	0.00	#DIV/0!		
39	JW3	D	5	1.13356	1.22682	0.00	#DIV/0!		
40	JW3	E	5	1.14436	1.25250	0.00	#DIV/0!		
41	16.14	Δ	5	1,205-	171575	0.00	#DIV/01	#DIV/01	#DIV/0

	212		0	1, 1,27,29	1 002	0.00	#DIV/0:		
40	JW3	E	5	1.14436	1.25250	0.00	#DIV/0!		
41	JWY	Α	5	1.13850	1.21575	0.00	#DIV/0!	#DIV/0!	#DIV/0!
42	JW4	В	5	1.14163	1.22616	0.00	#DIV/0!		
43	JW4	С	5	1.14981	1.27440	0.00	#DIV/0!		
44	JW4	D	5	1.14544	1.26260	0.00	#DIV/0!		
45	JW4	E	5	1.14700	1.23630	0.00	#DIV/0!		
46	JWE	Α	5	614191	1.23086	0.00	#DIV/0!	#DIV/0!	#DIV/0!
47	JW5	В	5	1.13870	1.22936	0.00	#DIV/0!		
48	JW5	С	5	1.14061	124792	[*] 0.00	#DIV/0!		
49	JW5	e ³ D	5	1.13453	1.23097	0.00	#DIV/0!		
50	JWS	E	5	1.13800	1.25870	0.00	#DIV/0!		
51	JW6-	Α	5	1.15127	1.24704	0.00	#DIV/0!	#DIV/0!	#DIV/0!
52	JWG	В	5	1.14913	1-24405	0.00	#DIV/0!		
53	JWG	C ·	5	1.15185	1.24086	0.00	#DIV/0!		
54.	JW6	D	5	(14488	1.2.6424	0.00	#DIV/0!		
55	JW6	E	6	1.15003	1.26409	0.00	#DIV/0!		
56	Jw7	A	5	1.14578	1.23370	0.00	#DIV/0!	#DIV/0!	#DIV/0!
57	JW7:	В	5	1.15145	1.2624(0.00	#DIV/01		
58	JW7	С	5	1.147695	1.24890	0.00	#DIV/0!		
59	JW7	D	5	1.13970	124790	0.00	#DIV/0!		
60	JW7	E	5	1.13646	1.22700	0.00	#DIV/0!		
61	JUID	Α	5	1.14604	1.26295	0.00	#DIV/0!	#DIV/0!	#D1V/0!
62	JWID	В	৸	1.14021	1.23567	0.00	#DIV/0!		
63	JWID	C	5	1.14706	1.25871	0:00	#DIV/0!		
64	JWID	D	5	1.14750	1.25217	0.00	#DIV/0!		
65	JWID	Ë	िंड	1.15078	1.22832	0.00	#DIV/0!		
66	JWIZ	Α	5	1,13428	1.22033	0.00	#DIV/0!	#DIV/0!	#DIV/0!
67	JWIZ	В	5	1.15014	1.25040	0.00	#DIV/0!		
68	JW12	С	5	1.13710	1.25858	0.00	#DIV/0!		
69	JW12	D	5	1.15079	1.25487	0.00	#DIV/0!		
- 70	JW12	E	5	1.13741	1.24515	0.00	#DIV/0!		
73	QA/QC	QA/QC		1.14306	1.14299	0.00	-	-	-
74	QA/QC	QA/QC		1.14305	1.14300	0.00	-	*	
36	JW3	А		1.13584	1.24777	0.00	-	·	•
Analyst				GL	GL				

Neanthes Survival and Change in Biomass Test Aeration and Feeding Checks

Client # & Name: 128 Jaques Whitford

Start Date & Time: 06-Feb-24 14:30

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

	Day 0	1	2	3	4	5	6	7	8	9
Date	Feb25	Febz	Feb 26	Feb 27	Feb 28	Mar 1	Mar 2	Max 03	moroy	Mar 05
Early AM		VV	1	1	 ✓ 	V	~			
Mid-day		- / /		\checkmark		4	\checkmark		Non	
Late PM		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			NM	

	Day 10	11	12	13	14	15	16	17	18	19
Date	06 Mar 06	06 Maro	06 Mar 08	06 Mar 09	Contaci O	domary	06 Mar 12	06Mar 13	06 Mar 14	06 Maris
Early AM	V	\checkmark	v	~	\checkmark		~	~		1
Mid-day	\checkmark	\checkmark	\checkmark	\checkmark						\checkmark
Late PM		\checkmark	\checkmark	\checkmark	\sim					\checkmark

	Day 20
Date	06 Marilo
Early AM	\checkmark
Mid-day	
Late PM	

:Comments:

06-Feb-27 Airline blocked on replicate UN 10 D: DO 6.8 @ 21.1 . C. Time: 8:18 J
H2O change done on all replicates ; water quality measurements taken
from replicate A
06-Mar-01 Hed & done on all replicates ; water quality mugshrements a
taken from replicate B
06-Mac-05 HD D on all replicentes: NQ measurements from replicate C JD
26 Mar 08 400 D on all replicates; WQ measurements from replicate D for all simples JD
06 Mar 14 HID O on all replicates; WQ from rep D tor all samples JD

	(SmLofe	lg/L Nut	2- Marine	2 perRo	۵	
F	eeding Chee	ж ж		-	eeding Che	ck
Day	Date	Analyst		Day	Date	Analyst
Day 0	06-Feb 24	5	e	Day 10	O6 Mar 06	70
Day 2	06-leb-26	20		Day 12	PG Maros	JD
Day 4	06-Feb 28	Cc		Day 14	06Mar 10	CM
Day 6	06-10ar 02	JD		Day 16	06 Mar 12	JD
Day 8	06 Maroy	m		Day 18	06Mar14	Ĵ

N:\BIOASSAY\FORMS\Neanthes\Neanthes aeration checks

Vancouver, BC

Neanthes arenaceodentata Survival and Change in Biomass Test Observations

Client # & Name: 128 Jacques Whitford Start Date and Time: 06 Feb-24014:30 End Date: 06-Mar-16

Date	Sample	Replicate	Comments (e.g. floating, emerged, swimming, and/or apparently dead polychaetes, sizes of	Analyst
AL ICL AL	Δ.1	Nil		1)5
Ub-1-10-29	AN		None emerged & 3-37PM	KO
06-105-15	AU		Iver charged (2) 8:50	
06-100-2		All	None emorged (a) 8:00	<u>0</u>
66027	All	AN	Mone emerger (a 9:00	
06 Febilis	All	AII	NONE Emerged (a) 8:32	30
06 Mar 1	AIL	AIL	None emerged (a) 8:22	ଧ୍ୟ
56 Mar2	JW 5	A	I worm emerged (a) 7:57	70
10b mer 4	1	D	I norm emerged CHIII-M	m
06mar 5	ID	BECE	1 worm emerged @ 9:11	JD
11	Ctrl 20	_ <u>A</u>	2 worms emerged @ 9:20	UL UL
11	ari20	B	I warm emerged @ 9:20	ЪĎ
- 17	CTV I IM	DiC	1 worm envirged (2 9:23	70
- 11	JW 5	D	I worm emerged (2 9:46	JD
06 Mort	<i>u</i> w5	C	2 worms emerand @ 8:15	JD
يد	Cotr1	D	1 worm emerged @ 8:15	JD
31	51	ß) worm emerged @ 8:17	20
06Har 07	Catrl IM	А	1 worm emerand @ 12:05	JD
COMORTS	CATE 1	B.A.E	1 worm emerand @ 9:36	30
12	cinter l	ABESC	1 worm emerged (a) 9:38	au
۲	charl	B	$ \sqrt{a} 9:40 $	O کے
1)	MYCAN	E.C	n n 0 9:46	SC
<i>,</i> h	JW23	Ϋ́, Α΄	2 worms emined @ 10:02	JD
ົບ	JW3	DB	warm engeraged @ 10:02	QL
•1	UW6	A,B	" " @ 10=14	GL
06 Maroq	AII	All	None emerged Q 8:25	<u> </u>
<i>Clomeril</i>	<u>nu</u>	AU	Lore energed	pm
OGNOV12	ANI	An	in h	QC.
O6 Mar B	CATYI	D	1 emerand @ 13:55	JD
¥1	JW7	D		JD
06 Mar 14	Catri I M	D	2 emproved @ 9:14	0r
ObHar14	Crite 1	A+C	1 emercand (e) 9:21	٥٢
3)	JWI	B	9:39	30
t)	JN7.	BN	°' 9.45	30
ካ	owz	B	n 9:54	من

FORM: 1604F12v1 2005/08/01

Vancouver, BC

ł

Neanthes arenaceodentata Survival and Change in Biomass Test Observations

Client # & Name: 128

Jacques Whitford

Start Date and Time: 06 Feb 24@14:30 End Date: 06 Mar-16

Date	Sample	Replicate	Comments (e.g. floating, emerged, swimming, and/or apparently dead polychaetes, sizes of	Analyst
57 A	141 4	ΛE	polychaetes, native organisms, food of sediment in digestive tract, inactive polychaetes)	10
<u>V6 M(1/ 14</u>)	<u>, 1</u>	<u><u> </u></u>	i emerged by 9.51	10
þ	JAN 9	A		10
<i>b</i>)	JIN 10	D	" Ins21	10
11	An	Au	HODA done.	10
ų	An	A	used for final WQ	10
Obter 15	CTR'	B.C	Lemerard @ 8:10	JD
٩	ctx	D	2 enveraged @ 8:10	JP
۲ ۲	JW9	E	1 emerand @ 8:12	JØ
ObMar16	CMI	All	Skiel Sandy, None emerged	KS
£r.	CMI	All	A-little fees gut contents B-lots gut contents, some feces in cups: C-sine as B	
19	CAR R		D-some flees, some gut autents E-similar to A, pillrinsed in DI; insien (9:40	an KS
	CDI	B	Some Smaller	S
11	Jwg	Α	2 emoraed,	CS
ObHarlb	200	は AII	leves + cocoons present in pupse unsed in DI + put in over CP 30HH	KS
	CD-1	and All	little fecer present, the all i some aut contents some @10.3044	KS
	<u>CO-J</u>	AIL	Similar to CHTTES CHE CD-1, rinsed IDI- over @ 10:40+H	KS
	<u>IW-2</u>	B	emerapd	\otimes
	JWZ	D	3 emerged	CS
	JW9	AIL	In oven@ 11:07	df.
	JWI	AII	Inovene 12:00	6/
	JW2	AIL	choven @ 12:15	\$P
	JW4	_ <u>A</u>	2 emerged	\mathcal{V}
	JW3	AIL	In oven @ 12:40	A
	JW4	All	Inover @ 12:53	Y
	SWL	A	Worm Emerged.	B
	JW5	All	In over @ 14:18	, pp
	JWF	E	emerged	KQ.
JW6	TWY	AI	In over @ 14:35	<u>al</u>
	JW7	All	In over @ 14:48	62
	JWR	<u>v</u>	Derposed & demerged	CZ
	JW10	<u>A11</u>	In over @ 15:05	JP
	JUIZ	AII	Inoven @ 15:18	P
				-

 i^{2}

N:/Biology/Bioassay/Forms/Neanthest/Neanthes Test Observations

Vizon SciTec Neanthes arenaceodentata Survival and Change in Biomass Test **Test Conditions and Survival Data**

Client # & Name: 128 - Jacques Whitford	Start Date and Time: 06-Feb-24@ 14:30
Client Project #:	End Date: 06 Mar 16
Vizon Project #: <u>2-11-0965B</u>	Age at Start of Test: Juvenile
Organism Lot #:	Statistics File: <u>NA128 - 0106</u>
Analyst(s): KSellen, C. Mack	inlang J. Danisek Whay. C. Stecklor
· · ·	V, Comeau

Sample ID: Control H-1

Vizon #: <u>N/A</u>

Date	06-Feb-24	06Feb 27	06 Maroz	OGMACOS	06 Mar 08	10bmcr11	06 Mar 14	abharlb
Replicate	A	В	С	D	E	A	В	С
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	19.5	20.8	20.1	19.5	19.9	20.4	21.2	19.9
D.O. (mg/L)	7.9	7.1	ጋ •3	7.4	7.4	6.9	6.8	7.3
рН	80	7.6	7.8	7.8	7.9	7.8 non wo	7.8	7-8
Salinity (‰)	\$827	28	28	28	28	28	28	28
Analyst	IKS	٥c	JD	10	<u>ა</u> ი	m	OL	CM

Replicate	Α	В	С	D	E	Ammonia & Su	lifide Samples Taken
# Surviving	5	5	เก	5	5	Initial	Final
Analyst	dl	G	KS	Ø	C,	VIS	JKS

F

ł

Sample ID: Control M-2

Vizon #: <u>N/A</u>

Date	06-FJ0-24	06 Feb 27	06 Mar 02	06 Maros	06 Maros	obmer 4	06Mar14	Guart
Replicate	A	В	с	D	E	A	В	С
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	9.5	20.S	20.1	19.6	20.3	20.2	21.2	20.3
D.O. (mg/L)	7.6	7.3	7.6	7.4	1.2	7.2	6.8	7.4
рН	8.0	הר	7.9	7.8	7.9	7.9	7.8	7.8
Salinity (‰)	27	28	28	28	28	Z8	28	29
Analyst	KS	JD	ac	SD	06	pm	70	CM
				·····	······	· · · · · · · · · · · · · · · · · · ·		
	1		1	1	1	1		

Replicate	А	В	С	D	E	Ammonia & Sulfid	Ammonia & Sulfide Samples Taken		
# Surviving	5	5	5	5	5	Initial	Final		
Analyst	VC	JD	KQ	Ğ	Ń	VKS	VØ		

Feeding Regime: 5 mL per Replicate of 8.0 g/L Seawater TetraMarine Slurry

N:/Biology/Bioassay/Forms/Neanthes/Neanthes Test Data Sheet

Vizon SciTec Neanthes arenaceodentata Test Conditi	Survival and Change in Biomass Test ions and Survival Data
Client # & Name: 128 - Jacques Whit	ford Start Date and Time: 06 Feb 24@14:30
Client Project #:	End Date: 06 Mar 16
Vizon Project #: <u>2-11-0965B</u>	Age at Start of Test: <u>Juvenile</u>
Organism Lot #: <u>PR06022\</u>	Statistics File: NA128-0106
Analyst(s): KSerben, C.M.	ackinlang, J. Danisek Minary, C. Sterkler
' Vo	1 Conteau

Sample ID: Control D-1

Vizon #: NA

Date	OB-Feb-24	06 Feb 27	06 Mar 02	OL Mar 05	06 Mor 68	06 mor 11	06 Mar 14	06Mar/6
Replicate	A (B	с	D	E	A	В	С
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	19.4	20.6	20.022	19.5	20.0	20.)	21.3	20.4
D.O. (mg/L)	7.8	6.9	7.46 ee	1.3	7.4	7.3	6.8	7.4
рН	7.9	27.45	27.4 7.8	7.8	7.9	7.9	7.7	7.8
Salinity (‰)	28	28	28	28	28	28	28	Cry 829
Analyst	KS	αι	JD	JP	مر	m	JD	OM

Replicate	A	в	C	D	Ē	Ammonia & Suli	ide Samples Taken
# Surviving	U)	5	5	5	5	Initial	Final
Analyst	VQ	CS	DC	KQ.	ĊI	VKS	

Sample ID: Control D-2

JD

Analyst

ţ

.

Ę

Vizon #: <u>NA</u>

JKS

JD

Date	06-Felo-24	06-Feb-27	06 Hav 02	06 Mar 05	OGMar 08	06 mery	06 Mar 14	ObMar 16
Replicate	A	В	c	D	E	A	В	с
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	19.4	20.9	20.2	19.4	19.9	20.3	21.2	20.5
D.O. (mg/L)	7.9	1.2	7.4	7.5	1.4	6.7	6.9	7.3
pН	7.9	7.7	7.9	7.9	7.9	7.8	7.7	7.8
Salinity (‰)	27	28	28	28	28	28	28	29
Analyst	KS	ac	JD	DC	GC	~~~	מר	CM
Replicate	A	В	с	D	E	Ammonia	& Sulfide Sa	mples Taken
# Surviving	5	S	h	5	5	Initial		Final

CJ

Feeding Regime: 5 mL per Replicate of 8.0 g/L Seawater TetraMarine Slurry

D

AND

N:/Biology/Bioassay/Forms/Neanthes/Neanthes Test Data Sheet

Vizon S	SciTec ^	<i>Neanthes arenaceodentata</i> Survival and Change in Biomass Test Test Conditions and Survival Data								
Clie	nt # & Name:	128-Ja	cques While	nford	Start Da	te and Time:	06Feb2U	1214:30		
Clie	ent Project #:			_		End Date:	06 Mar	16		
Viz	on Project #:	2-11-965	5B	-	Age at Start of Test: <u>Javenile</u>					
Org	anism Lot #:	DR0602	121		St	atistics File:	NA 128	-0106		
	Analyot/o):	12Sala		encly 1		Doorsok	. IN COL	c sterkler		
	Analysi(s).	K Jerver		comprise	ing in	ma	pondy ;			
		T. AL			V	In equ				
Sample ID: VWV Vizon #: <u>0602107-01</u>										
Date	06-J-b-24	06 Feb 27	66 Mar02	Ob Moros	0.6 Maros	Obmoril	Object 14	Obplar 16		
Replicate	A	В	с	D	<u> </u>	A	В	С		
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20		
Temp. (ºC)	19.5	20.3	20.0	19.5	20.4	20.3	21.1	20.5		
D.O. (mg/L)	7.5	7.3	7.4	1.S	7.6	6.6	6.9	7.2		
рН	79	7.6	7-8	7.8	7.8	7.6	7.7	7.8		
Salinity (‰)	28	29	28	28	28	28	28	29		
Analyst	KS	QL	70	30	QL	m	75	CM		
	·									
Replicate	A	В	с	,D	E	Ammonia 8	& Sulfide San	nples Taken		
# Surviving	5	5	5	1955	.5	Initial		Final		
Analyst	JD	C9,	70		L VQ	VIS		\checkmark		
Sample ID:	TW	2	 -		ŝ	Vizon #:	06021	07-02		
Date	06-Feb-24	06 Feb 27	06 Mar 02	06 Mar 05	06 Mar 08	Obmiril	66 Mar 14	06 Marto		
Replicate	A	В	c	D	E	A	В	С		
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20		
Temp. (ºC)	19.5	20.2	.20.Z	19.5	20.1	20. Z	21.2	20.5		
D.O. (mg/L)	7.8	7.1.	7.3	7.4	7.5	6.5	6.9	7-1		
рН	7.8	7.6	.7.8	7.7	7.8	7.7	7.8	7.9		
Salinity (‰)	28	29	28	28	28	28	28	29		
Analyst	ILS	ود ا	30	70	20	111/05	JD	CM		
Donligato		P			E	Ammonia	L Sulfida Can	nles Taken		
H Survivin -		5	6	5	<u> </u>	Initial	x Juniue Jdil	Final		
# Surviving			10	0 Co	$\overline{\mathbf{x}}$					
Analyst	ட்கு				<u>₩¥</u> ¥	LVK-				

Feeding Regime: 5 mL per Replicate of 8.0 g/L Seawater TetraMarine Slurry

l

Vizon SciTec Neanthes arenaceodentata Survival an Test Conditions and Su	id Change in Biomass Test urvival Data
Client # & Name: #128-Jacques Whitford	Start Date and Time: <u>06 Feb 24 @ 14:30</u>
Client Project #:	End Date: 06 Mar 16
Vizon Project #: <u>2-11-965B</u>	Age at Start of Test: <u>Juvenile</u>
Organism Lot #: <u>DR060221</u>	Statistics File: <u>NA138-0106</u>
Analyst(s): KSechen, C. Mackinla	y J. Danisek Minay C steckler
'	Val Comean

Sample ID: <u>TW3</u>

Vizon #:0102105-03

Date	06-Feb-24	06 FED27	06 Mar 02	OLOMOROS	06Mar08	Obmery	06 Mar 14	ObMarile
Replicate	A	B	с	D	E	A	В	C
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	19.5	20.2	20.2	19.5	20.2	20,2	21.4	20.4
D.O. (mg/L)	7.8	7.5	1.5	7.4	7.4	7.2	6.9	6.9
рН	7.8	7.7	7.8	7.8	7-8	7.9	7.8	7.8
Salinity (‰)	28	29	29	28	28	Z8	28	29
Analyst	KS	ar	JD	SD	90	M	JD	CM

Replicate	Α	В	С	D	E	Ammonia & Si	ulfide Samples Taken
# Surviving	5	5	5	5	5	Initial	Final
Analyst	JD	CS,	Q	R.	· Cz	VKS	

7

Sample ID: <u>JW4</u>

Vizon #: 02 060210J-04

Date	06-F26-24	Ob Reb27	OG Mar 02	OGMOROS	O6 Maros	Obmoril	06 Mar 14	O6Mar16
Replicate	Α	В	С	D	E	A	В	c
:	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	19.5	20.2	20.Z	19.6	20.2	20.1	21.6	20.3
D.O. (mg/L)	7,7	6.9	7.4	7.2	7.4	7.2	7.0	6.9
pН	7.8	7.5	7.7	7.7	7-8	7.9	7.7	7.8
Salinity (‰)	28	29	28	28	28	28	28	29
Analyst	1LS	JD	a	7,0	JD	m	OL	CM
		· · ·			· · · · · · · · · · · · · · · · · · ·			
Replicate	A	В	C C	D	E	Ammonia & Sulfide Samples Taken		

Replicate	A	В	С	D	E	Ammonia & Sulfide Samples Taker		
# Surviving	Ģ	5	5	5	S	Initial	Final	
Analyst	R	DL	Ch.	đ	R	VKS		

Feeding Regime: 5 mL per Replicate of 8.0 g/L Seawater TetraMarine Slurry

N:/Biology/Bioassay/Forms/Neanthes/Neanthes Test Data Sheet

Neanthes arenaceodentata Survival and Change in Biomass Test Vizon SciTec **Test Conditions and Survival Data** Client # & Name: 128 - Jacques Whitford Start Date and Time: 06 Feb 24 @ 14:30 End Date: 06 Mar 16 Client Project #: Age at Start of Test: <u>Tuvpnile</u> Vizon Project #: 2-11-965B Organism Lot #: DROGO221 Statistics File: NAV38-0106 J. Danisek Minay, C.Sterkler, 1/al Compay C.M. Kinh Analyst(s): Vizon #: 0602107-05 11 Sample ID: Venery 06 Mar 08 06 Mar 14 ObMar 16 Date 06-Feb-24 (6Feb 27 06 Maroz Olo Maros Replicate Α В С D Ε Α B C

Day 12

20.(

1.4

7.9

28

U

Day 15

М

ø

20,0

7.3

80

28

ſ₩

Day 18

20.0213

!\$

SD

23

٦.0

79

Day 20

20.4

7,0

9

7.

99

CM H

Replicate	A	В	С	D	E	Ammonia & Sul	fide Samples Taken
# Surviving	5	5	5	5	5	Initial	Final
Analyst	JD	Û,	30	C S	JD		

Day 9 9.6

1.4

7.8

28

90

Sample ID:	JW	0	-			Vizon #:	060210	DJ-06
Date	06-Feb-24	66 Feb 27	O6 Maroz	06 Mar 05	06 Maros	obinoru	06 Mar 14	Oblan 6
Replicate	A	В	С	D	E	Α	В	С
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	19.6	20.2	20.1	19.6	20.3	2010	21.4	20.4
D.O. (mg/L)	77	7.4	7.4	٦.5	7.3	7.2	٥.٢	7-0
pН	7.9	ר.ר	7.8	7.8	7-9	7.8	7.8	7.9
Salinity (‰)	28	29	29	28	28	28	28	29
Analyst	145	ac	00	JO	JD	m	30	CM
-	T	,	1		1	1		
Replicate	A	В	C	D	E	Ammonia & Sulfide Samples Taken		
# Surviving	5	5	5	5	5	Initial		Final
Analyst	CS	JC	V	CG .	OL 0			

Feeding Regime: 5 mL per Replicate of 8.0 g/L Seawater TetraMarine Slurry

Day 0

19.6

7.7

79

28

ХS

÷Į.

Temp. (ºC)

D.O. (mg/L)

Salinity (‰)

Analyst

pН

Day 3

20.1

7.1

7.6

29

٥C

Day 6

20.1

7.3

マク

28

DC

N:/Biology/Bioassay/Forms/Neanthes/Neanthes Test Data Sheet

цŞ.

Vizon SciTec [/]	Veanthes arenaceodentata S	urvival and Change in Biomass Test
	Test Conditio	ons and Survival Data
Client # & Name:	: #128-Jacques White	Start Date and Time: 06 Feb 24 @ 14:30
Client Project #:		End Date: 06 Mar 16
Vizon Project #:	2-11-965B	Age at Start of Test: Juvenile
Organism Lot #:	DR060221	Statistics File: <u>NA128-0106</u>
Analyst(s):	: KSuben, C.M.	refinley J. Danisek Nmay, C. Steeklon
	4	V, Comean
Sample ID:	JW7	Vizon #: 0602107-07

Date	06-Feb24	06 Feb 27	06 Mar 02	D6 Maros	06 Maros	Obmoril	06 Mar 14	ocharlb
Replicate	Α	в	С	D	E	A	В	с
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20
Temp. (ºC)	19.6	20.2	20.2	19.7	20.5	20.1	21.3	20.3
D.O. (mg/L)	7.8	6.9	7.6	7.3	7.2	7.3	7.1	7.1
pH	7.9	7.5	7.8	7.7	7.8	7.9	7-8	7-9
Salinity (‰)	28	29	29	28	28	28	28	29
Analyst	KS	JD	ac	JD	30	m	0L	CM

Replicate	Α	В	С	D	E	Ammonia & Sulfi	de Samples Taken
# Surviving	5	5	5	5	5	Initial	Final /
Analyst	NO	JD	CS .	R	W.C.		

Sample ID:

JW9

Vizon #: 060210, J-09

Date	06-Feb-24	a.feb27	O6 Maroz	06 Moros	06 Mar 08	Obmoril	06 Mar 14	ObMarlb			
Replicate	Α	В	C	D	E	A	В	C			
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20			
Temp. (ºC)	19.7	20.2	20.3	19.7	20.6	20.2	21.3	20.4			
D.O. (mg/L)	7.7	7.3	7.4	7.4	7.2	7.2	7.1	7.1			
pH	7.9	7.6	7.8	7.8	7.8	7.9	7.8	7.9			
Salinity (%)	27	28	28	28	28	28	28	29			
Analyst	KS	JD	al	01	50	hw.	JC	CM			
						- <u></u>					
Denligete					-	Ammonia	& Sulfido Sar	nnles Teken			

Replicate	Α	В	c	D	E	Ammonia & Sulfide Samples Taken		
# Surviving	5	5	5	5	5	Initial	Final /	
Analyst	(3)	JD	(5	NO	NQ.		· V	

Feeding Regime: 5 mL per Replicate of 8.0 g/L Seawater TetraMarine Slurry

N:/Biology/Bioassay/Forms/Neanthes/Neanthes Test Data Sheet

Vizon S	Vizon SciTec Neanthes arenaceodentata Survival and Change in Biomass Test Test Conditions and Survival Data								
Clie	nt # & Name:	128-Jac	ques Whit	ford	Start Da	Start Date and Time: <u>06 Feb 24@1430</u>			
Clie	ent Project #:			_		End Date:	06 Mar	6	
Viz	on Proiect #:	2-11-9651	3	-	Age at s	Start of Test: Twopile			
Ora	, aniem I ot #•	DROGO	221	-	с с	latistics Filo	NARI	8-0105	
0.9		KI		- Na stando d	hand O	hrach:			
	Analysi(s): Deven J. Danisek windy 10 mer Kinlay, V. Conclay								
		Corey Die						от (р	
	Sample ID: $JWID$ Vizon #: 060210J - 10								
Date	06-F-10-24	06 Feb 27	06Mar 02	Ob Mar OS	06 Moros	obmini	06 Mar 14	06 Marth	
Replicate	A	В	c	D	E	A	В	c	
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20	
Temp. (ºC)	19.7	20.2	20.4	19.4	20.3	20.4	21.4	20.5	
D.O. (mg/L)	7.6	7.4	7.5	7.5	7.3	6.7	7.1	6.9	
рН	79	7.7	7.9	7-8	7.9	7.7	7.9	4.8	
Salinity (‰)	28	29	28	28	28	28	28	29	
Analyst	KS	QL	70	JD	50	m	SD	CM	
						1			
Replicate	A	B	C	D	E	Ammonia &	& Sulfide San	nples Taken	
# Surviving	5	Der	$\frac{b}{1}$	5	5	Initial		Final	
Analyst				<u> </u>			<u> </u>		
Sample ID:	JWI	2				Vizon #:	06021)J-12	
Date	06-Feb 24	Ob Feb 27	0/a Mar (02	06 Mix 05	06 Mar 08	abmeri	06 Mar 14	oblark	
Replicate	A	В	C	D	E	Α	В	С	
	Day 0	Day 3	Day 6	Day 9	Day 12	Day 15	Day 18	Day 20	
Temp. (^e C)	19.7	20.2	20.4	19.5	20.4	201	21.4	20,4	
D.O. (mg/L)	7.6	7.0	7.6	7.5	7.3	7.1	0.5	6.9	
рH	7.9	7.6	٩، ٦	7.8	7.8	7.8	79	7-9	
Salinity (‰)	28	29	29	\$2829	28	28	28	29	
Analyst	KS	jo	02	50	う	m	70	CM	
F	1		1	T	1	1			
Replicate	A	B	<u> </u>	D	E	Ammonia a	& Sulfide San	nples Taken	
# Surviving	5	5	5	5	5	Initial		Final	
Analyst	I WQ	1 20	L US	19			*		
Feeding Regin	Feeding Regime: 5 mL per Replicate of 8.0 g/L Seawater TetraMarine Slurry								

FORM: 1604F08v1 2005/08/01

N:/Biology/Bioassay/Forms/Neanthes/Neanthes Test Data Sheet

(

Vizon SciTec, Inc. Vancouver, BC

	Unionized	(mg N/L)	0.0001	0.0482	0.0100	0.0132	0.0238	0.0184	0.0211	0.0873	0.0492	0.0415
	% Unionized	Ammonia ^{ab}	2.14	2.68	1.99	1.99	2.50	2.50	2.50	2.50	2.14	2.50
Day 10	Total Ammonia	(mg N/L)	0.797	1.80	0.503	0.663	0.950	0.735	0.844	3.49	2.30	1.66
	Temperature	(°C)	20.5	20.5	20.4	20.3	20.4	20.4	20.3	20.4	20.5	20.4
		Ηd	7.8	7.9	7.8	7.8	7.9	7.9	7.9	7.9	7.8	6'2
	Salinity	(%a)	29	29	53	29	29	29	29	29	29	29
	Unionized Ammonia	(mg N/L)	0.0057	0.0048	0.0056	0.0055	0.0050	0.0056	0.0053	0.0084	0.0057	0.0046
	% Unionized	Ammonia ^{ab}	2.50	1.99	66'1	1.99	2.50	2.50	2.50	2.55	2.50	2.50
Day 0	Totai Ammonia	(mg N/L)	0.226	0.243	0.282	0.274	0.200	0.222	0.212	0.328	0.228	0.185
	Temperature	(c)	19.5	19.5	19.5	19.5	19.6	19.6	19.6	19.7	19.7	19.7
		Hd	7.9	7.8	7.8	7.8	7.9	7.9	7.9	7.9	7.9	7.9
	Salinitv	(%)	28	28	28	28	28	28	28	27	28	28
	Samole	Name	1WL	JW2	JW3	JW4	JW5	JW6	2WL	9WC	JW10	JW12

Total and Unionized Ammonia Results for Neanthes arenaceodentata Tests

Π

÷

ĺ

^a Values from Bower CE and Bidwelt, JP. 1978. Ionization of Ammonia in Seawater: Effects of Temperature, pH and Salinity. Journal of Fisheries Research Board of Canada 35:1012-1016.

^b When a %unionized ammonia value is not available for a certain pH or salinity, the value closest to the pH or salinity is used.

S:\Toxicology/2-11\2-11-965 (Misc Sediment)\B Jacques Whitford Amphipods and Neanthes\Total and Unionized Ammonia Results for Neanthes Tests

Page 1 of 1

CORD BOOK

INVEST

72 (

Project #: 2-11-0965B Company: Jacques Whitford Contact: Janine Beckett

PAGE NUMBER: 145998

I.

		Sample	NH ₃	S
BCR #	Sample	Date	mg N/L	mg/L
060302A-01	Neanthes Day 0 Control D	24-Feb-2006	0.022-0.018	
060302A-02	Neanthes Day 0 Control D	24-Feb-2006	_	<0.20
060302A-03	Neanthes Day 0 Control M	24-Feb-2006	20.01	
060302A-04	Neanthes Day 0 Control M	24-Feb-2006		40.20
060302A-05	Neanthes Day 0 JW1	24-Feb-2006	0.226	
060302A-06	Neanthes Day 0 Gentrel D- マル	24-Feb-2006		0.21
060302A-07	Neanthes Day 0 JW2	24-Feb-2006	0.243	
060302A-08	Neanthes Day 0 JW2	24-Feb-2006		0,30
060302A-09	Neanthes Day 0 JW3	24-Feb-2006	0.282	
060302A-10	Neanthes Day 0 JW3	24-Feb-2006		0,32
060302A-11	Neanthes Day 0 JW4	24-Feb-2006	0.274	
060302A-12	Neanthes Day 0 JW4	24-Feb-2006		0.32
060302A-13	Neanthes Day 0 JW5	24-Feb-2006	0.200	
060302A-14	Neanthes Day 0 JW5	24-Feb-2006	·	0.43
060302A-15	Neanthes Day 0 JW6	24-Feb-2006	0.222	
060302A-16	Neanthes Day 0 JW6	24-Feb-2006		40.20
060302A-17	Neanthes Day 0 JW7	24-Feb-2006	0.212	<u></u>
060302A-18	Neanthes Day 0 JW7	24-Feb-2006		1.28
060302A-19	Neanthes Day 0 JW9	24-Feb-2006	0.328	
060302A-20	Neanthes Day 0 JW9	24-Feb-2006		0.64
060302A-21	Neanthes Day 0 JW10	24-Feb-2006	0.228	
060302A-22	Neanthes Day 0 JW10	24-Feb-2006		0.43
060302A-23	Neanthes Day 0 JW12	24-Feb-2006	0.185	
060302A-24	Neanthes Day 0 JW12	24-Feb-2006		0.43
Date Analyzed:			FRE. 24/26	March 7/06
QC				
TRUE			0 103	
Found				
			0.040	
Initials		·····		YL
Test Methods:			5330 / 5331	
			L	

LABORATORY RECORD BOOK

INVESTIGATOR:

PROJECT NUMBER:

DATE:

PAGE NUMBER: 113273

Project #: 2-11-965B Company: Jacques Whitford Contact: Janine Beckett

		Sample	NH ₃	
BCR #	Sample	Date	mg N/L	
060317A-01	Neanthes Day 20 CD1	16/11023-Feb-2006	0.970	
060317A-02	Neanthes Day 20 C2D	Maril 23-Feb-2006	0.584	
060317A-03	Neanthes Day 20 CM1	23-Feb-2006	6.73 / 6.21	
060317A-04	Neanthes Day 20 CM2	23-Feb-2006	6.20	
060317A-05	Neanthes Day 20 JW1	23-Feb-2006	0.797	
060317A-06	Neanthes Day 20 JW2	23-Feb-2006	1.80	
060317A-07	Neanthes Day 20 JW3	23-Feb-2006	0.485 /0.520	
060317A-08	Neanthes Day 20 JW4	23-Feb-2006	0.663	
060317A-09	Neanthes Day 20 JW5	23-Feb-2006	0.950	
060317A-10	Neanthes Day 20 JW6	23-Feb-2006	0.735	
060317A-11	Neanthes Day 20 JW7	23-Fəb-2006	0.844	
060317A-12	Neanthes Day 20 JW9	23-Feb-2006	3:49	
060317A-13	Neanthes Day 20 JW10	23-Feb-2006	2.30	 -
060317A-14	Neanthes Day 20 JW12	23-Feb-2006	1.66	
Date Analyzed:			Mar. 18/06	
QC				
TRUE			0.128	
Found			0.131	
Initials			Le	
Test Methods:			5330 / 5331	

LABORATORY RECORD BOOK

DATE:

PROJECT NUMBER:

BCRI

INVESTIGATOR:

PAGE NUMBER: 113272

Project #: 2-11-0965B Company: Jacques Whitford Contact: Janine Beckett

BCR #	Sample	Sample Date	S ⁻ mg/L	
060316Y-01	Neanthes Day 20 CD1	mcy 16 23-Feb-2006	1135	
060316Y-02	Neanthes Day 20 CD2	1 23-Feb-2006	0.00	
060316Y-03	Neanthes Day 20 CM1	23-Feb-2006	0.28	
060316Y-04	Neanthes Day 20 CM2	23-Feb-2006	20.20	
060316Y-05	Neanthes Day 20 JW1	23-Feb-2006	< 0.20	
060316Y-06	Neanthes Day 20 JW2	23-Feb-2006	<0.20	
060316Y-07	Neanthes Day 20 JW3	20-T eb/2006	10.20	
060316Y-08	Neanthes Day 20 JW4	23-Feb-2006	0.22	· · · · · · · · · · · · · · · ·
060316Y-09	Neanthes Day 20 JW5	23-Fep-2006	0.22	
060316Y-10	Neanthes Day 20 JW6	23-Feb-2006	0.22	
060316Y-11	Neanthes Day 20 JW7	23-Feb-2006	<0.20	
060316Y-12	Neanthes Day 20 Jiwo	23/Feb-2006	20.20	
060316Y-13	Neanthes Day 20 JW/10	23-Feb-2006	0.41	
060316Y-14	Neanthes Day 20 JW 10	2β-Feb-2006	< 0.20	
	Incontries Day 20 JW 12	23-Feb-2006	0.22	
Date Analyzed:				
		<i>I</i> ,	larch 20/06	
QC	 			
TRUE	<u> </u>			-
Found				-
Initials				
			YL	
est Methods:				
				···· ····

Neanthes Initial Seawater Measurements

Client # & Name: #128 Jacques Whitford. Control Seawater: Vancouver Aquarium

Date	Temperature	pН	D.O.	Salinity
06-Feb-23	21.1°C	8.1	7.5	27%
06-E00 Mar-02	20.0°C	8.0	<u> </u>	77.1.
06 Mar-05	20.4°C	8.0	1.7	28 '/ .
06 Mar 08	20.0°C	7.9	7.7	281
06 mar ll				28%
06 Mar 13	20.30	7.9	7.8	28:1.
· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·			

Randomization Chart for Neanthes Tests

Use the coloured dots to find appropriate concentrations

Posit	lion	······································			Position			
#		Treatment	Replicate	Colour	#	Treatment	Replicate	Colour
	8	Cntrl-1M	A	Et Creen	65	Cntrl-1D	A	Dark Blue
	44	Cntrl-1M	В 🚽	Line Croon	6	Cntrl-1D	В	Dark Blue
•	14	Cntrl-1M	2 •0	Croon	7	Cntrl-1D	С	Dark Blue
	1	Cntrl-1M	D 🔊	Lindinaajj	63	Cntrl-1D	D	Dark Blue
	5	Cntrl-1M	E	El circon	41	. Cntrl-1D	E	Dark Blue
	46	JW1	А	Beige	20	JW6	А	White
	39	JW1	В	Beige	29	JW6	В	White
	9	JW1	С	Beige	22	JW6	С	White
	48	JW1	D	Beige	56	JW6	D	White
	21	JW1	E	Beige	68	JW6	E	White
	50	JW2	А	Yellow	38	JW7	А	Orange
	49	JW2	В	Yellow	55	JW7	В	Orange
	42	JW2	С	Yellow	35	JW7	С	Orange
	47	JW2	D	Yellow	54	JW7	D	Orange
	40	JW2	E	Yellow	17	JW7	E	Orange
	26	JW3	А	Dark Green	66	JW9	A	Lt. Blue
	32	JWЗ	В	Dark Green	2	JW9	В	Lt. Blue
	58	JWЗ	С	Dark Green	4	JW9	С	Lt. Blue
	57	JW3	.» D	Dark Green	18	JM9	D	Lt. Blue
	23	JWЗ	E	Dark Green	64	JW9	E	Lt. Blue
	52	JW4	A	Yellow Glo	10	JW10	Α	Red-Orange
	69	JW4	В	Yellow Glo	60	JW10	В	Red-Orange
	43	JW4	С	Yellow Glo	25	JW10	С	Red-Orange
	3	JW4	D	Yellow Glo	62	JW10	D	Red-Orange
	12	JW4	E	Yellow Glo	67	JW10	E	Red-Orange
	59	JW5	А	Leaf	70	JW12	A	Green Glo
	45	JW5	В	Leaf	16	JW12	В	Green Glo
	13	JW5	С	Leaf	28	JW12	С	Green Glo
1.	15	JW5	D	Leaf	31	JW12	D	Green Glo
	37	JW5	E	Leaf	30	JW12	E	Green Glo
	61	Cntrl-2M	Α	Red	11	Cntrl-2D	А	Neon Green
	24	Cntrl-2M	В	Red	36	Cntrl-2D	В	Neon Green
	34	Cntrl-2M	С	Red	53	Cntrl-2D	С	Neon Green
	19	Cntrl-2M	D	Red	27	Cntrl-2D	D	Neon Green
	33	Cntrl-2M	E	Red	51	Cntrl-2D	E	Neon Green

Client # 128

5

Neanthes Acclimation and Holding Conditions

ţ

Species: Neanthes are nacendentate

Organism Lot #: <u>DRO60231</u>

Holding (Conditions								
		Before Wat	er Addition			After	Water Additic	L.	
Date & Time	Salinity (‰)	Temperature (ºC)	Hd	DO (mg/L)	Salinity (‰)	Temperature (ºC)	Hq	DO (mg/L)	Analyst
06 Feb 21	33	13	J.S	7.3	32	20.5	1.7	1.5	9
00 700 27 (0 8:45	33	21.0	7.4	7.3	32	20.5	7.5	1.2	97
Feb 226	D 14:20				27	102	7, 7		S
Feb 23 8:4	128		L. L		828		Et as		0
Feb230	I4'10				29	20,5	7.8	イント	90
									Ø
						×			
Feeding									
Date	06 FED 21	06Feb22	06 Feb23.						
Analyst	Nermer	1 Pridrad	A Pakerd						
Culture H	leaith	Ŋ							
Date	Total Number	Deaths	Removed	% Mortality (Previous 7 days)		Comments (e.g	l appearance)		Analyst
						i			

N:\BIOASSAY\FORMS\Neanthes\Acclimation & Holding Conditions

VIZON SCITEC INC. Vancouver, BC

ГС50 (Сd²⁺ mg/L)

	Sample Na JW1 - Aver	ame: rage			SO	P Name:				Meas Wedn	ured: esday, Apı	il 05, 2006 1	1:49:53	PM		
1	Sample So Works = Vi	ource & t izon Scite	ype: ec Inc-	Kerrie Sei	Me rben Viv	asured b ian	/ :			Analy Wedn	sed: esday, Apı	il 05, 2006 1	1:49:54	PM		
F S F 1 C V	Particle Na Soil Particle RI .230 Dispersant Vater	ame: : t Name:			Acc Hyc Abs 0.5 Dis 1.33	cessory N Iro 2000S sorption: persant R 30	lame: (A) RI:			Analy Gener Size ra 0.020 Weigh 0.720	sis model al purpose ange: to ted Resid %	: 2000.000 ual :	um	Sensit Normal Obscu 17.50 Result Off	ivity: ration: % Emulation:	
0	Concentra 0.0104	tion: %Vol			Spa 4.67	in : 75				Unifor 1.63	mity:			Result Volume	units:	
S 1	Specific S .61	urface Ar m²/g	rea:		Sur 3.73	f ace Wei g 35	ghted Mean um	D[3,2]]:	Vol. W 18.918	eighted M um	ean D[4,3]:				
	d(0.1):	1.469		um			d(0.5):	9.1	55	um			d(0.9): 44.2	68 um	
Γ							Particle	e Size	Distribu	tion						
	Volume (%)	5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.01			0.1	2006.1	1 Par		10 Size (µm		100		100		100 90 80 70 60 50 40 30 20 10	
E	JVV1 -	Averag	e, vve	ednesda	y, April 05	, 2006 1	:49:53 PN	1								
	Size (µm) 0.020 0.022 0.024 0.027 0.030 0.033 0.037 0.041 0.045 0.050	001 Under 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00	0.112 0.124 0.137 0.152 0.168 0.186 0.205 0.227 0.251 0.278	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Size (L 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.5	Vol Unde 26 2 92 3 66 4 48 4 38 5 38 6 49 7 71 8 07 9 56 10	% .74 .38 .08 .83 .64 .50 .44 .51 .68	Size (µm) 3.499 3.872 4.285 4.742 5.247 5.806 6.425 7.109 7.867 8.706	24.10 26.37 28.77 31.30 33.93 36.67 39.49 42.41 45.40 48.46	Size (19.3 21.1 23.9 26.9 32.4 35.9 39.1 44.1 48.1	Vol Unde 572 72 558 75 566 78 520 80 346 82 473 84 334 86 764 88 001 89 590 91	2.91 5.60 3.14 0.52 2.74 4.79 5.66 3.37 0.91 1.30	Size (µm) 109.466 121.132 134.041 148.326 164.133 181.625 200.981 222.400 246.101 272.329	voi Under % 97.81 98.19 98.50 98.78 99.02 99.23 99.44 99.63 99.80 99.93	
	0.055 0.061 0.067	0. 0. 0.	.00 .00 .00	0.308 0.341 0.377	0.09 0.24 0.49	1.7 1.9 2.1	22 11 06 13 09 14	.94 .30 .78	9.633 10.660 11.796	51.57 54.72 57.88	53.8 59.0 65.9	379 92 521 93 975 94	2.53 3.63 4.60	301.351 333.467 369.005	99.98 100.00 100.00	

0.075

0.083

0.091

0.101

0.00

0.00

0.00

0.00

0.417

0.462

0.511

0.565

0.80

1.18

1.64

2.16

2.334

2.583

2.858

3.162

13.053

14.444

15.983

17.687

61.03

64.13

67.16

70.10

73.006

80.787

89.396

98.924

16.38

18.10

19.96

21.96

100.00

100.00

100.00

408.330

451.846

500.000

95.45

96.19

96.82

Sample JW2 - A	Name: verage			SO	P Name:				Measu Wedne	u red esda	l : ay, April 0:	5, 2006 2:0	0:38	PM		
Sample Works =	Source Vizon S	& type: citec Inc-	Kerrie Se	Mea rben Vivis	asured by: an				Analy Wedne	sed: esda	: ay, April 0	5, 2006 2:0	0:39	PM		
Particle Soil	Name:			Acc Hyd	essory Nar ro 2000S (A	ne:)			Analy Genera	sis ı al pu	model: Irpose			Sensit Normal	vity:	
Particle	RI:			Abs	orption:				Size ra	ange	e :			Obscu	ration:	
1.230				0.5					0.020	4 a al	to 200	00.000 u	m	16.96	% Faculations	
Water		e:		1.33	io				0.634	tea	%	•		Off	Emulation:	
Concen 0.0093	tration: %Vc	bl		Spa 4.95	n : 6				Unifor 1.58	mity	<i>ı</i> :			Result Volume	units:	
Specific 1.73	Surface m²/g	Area:		Sur 3.45	f ace Weight 9 um	ed Mean D[3,2]:	:	Vol. W o 17.616	eigh	i ted Mear um	n D[4,3]:				
d(0.1)): 1.3	07	um			d(0.5): 8	8.82	.6 ι	ım				d(0.9): 45.04	46 um	
						Particle Si	170	Distribut	ion							7
	4.5							\sim							100	
	4							/							90	
	3.5						4		X						80	
(%	3					/								-	70	
e (0	0													_	60	
l m	2.5													-	50	
	2													_	40	
	1.5				/		Ϊ			N					30	
	1										N				20	
	05														10	
	0.0				/										10	
	0. 0.	01		0.1	1			10			100		100	0 30	00	
						Particl	e S	Size (µm))							
JW2	2 - Aver	age, W	ednesda	y, April 05,	2006 2:00	0:38 PM			·							_
Size (µ	m) Vol Ur	nder %	Size (µm)	Vol Under %	Size (µm)	Vol Under %		Size (µm)	Vol Under %	1	Size (µm)	Vol Under %	6	Size (µm)	Vol Under %	
0.0	20	0.00	0.112	0.00	0.626	3.13		3.499	26.53		19.572	72.9)	109.466	98.62	
0.0	22 24	0.00	0.124	0.00	0.692	3.86 4.66		3.872	28.78		21.658	75.5	2	121.132	99.11	
0.0	27	0.00	0.152	0.00	0.848	5.52		4.742	33.55		26.520	80.3	5	148.326	99.74	
0.0	30	0.00	0.168	0.00	0.938	6.45		5.247	36.06		29.346	82.5	1	164.133	99.90	
0.0	33	0.00	0.186	0.00	1.038	7.45		5.806	38.63		32.473	84.5	5	181.625	99.97	
0.0	37	0.00	0.205	0.00	1.149	8.52		6.425	41.28		35.934	86.4	2	200.981	100.00	
0.0	45	0.00	0.227	0.00	1.407	9.67		7.867	43.99		44.001	89.6	5	246.101	100.00	
0.0	50	0.00	0.278	0.03	1.556	12.23		8.706	49.61		48.690	91.0	7	272.329	100.00	
0.0	55	0.00	0.308	0.11	1.722	13.65		9.633	52.51		53.879	92.3	6	301.351	100.00	
0.0	61 67	0.00	0.341	0.28	1.906	15.17		10.660	55.46		59.621	93.5	4	333.467	100.00	
0.0	07	0.00	0.377	0.50	2.109	10.60		11.790	50.44		05.975	94.0	- 1	309.005	100.00	

0.075

0.083

0.091

0.101

0.00

0.00

0.00

0.00

0.417

0.462

0.511

0.565

0.91

1.35

1.87

2.46

2.334

2.583

2.858

3.162

13.053

14.444

15.983

17.687

61.43

64.40

67.31

70.15

73.006

80.787

89.396

98.924

95.61

96.51

97.32

98.02

408.330

451.846

500.000

18.53

20.37

22.32

24.37

100.00

100.00

S J	ample N a W3 - Ave	ame: rage			SC	PN	lame:				Measure Wedneso	d: lay, April 0	5, 2006 2:0	07:30	PM		
S V	Sample So Vorks = Vi	ource & t izon Scite	ype: ec Inc-	Kerrie Se	Me rben Viv	asu ian	ired by:				Analyse Wedneso	d: Iay, April 0	5, 2006 2:0)7:31	PM		
P S P 1 D V	article Na oil article RI 230 ispersant /ater	ame: : t Name:			Ac Hyd Ab 0.5 Dis 1.3	ces dro 2 sorp per 30	sory Nan 2000S (A) otion: sant RI:	ne:)			Analysis General p Size rang 0.020 Weighted 0.632	model: ourpose je: to 200 d Residual %	00.000 ι :	ım	Sensit Normal Obscu 14.36 Result Off	ivity: ration: % Emulation:	
C 0	oncentra .0089	tion: %Vol			Sp a 4.6	an : 55					Uniformi 1.65	ty:			Result Volume	units:	
S 1	pecific S .51	urface Ai m²/g	rea:		Su 3.9	fac 73	e Weight um	ed Mean D[[3,2]	:	Vol. Weig 21.616	hted Mear um	n D[4,3]:				
	d(0.1):	1.554		um				d(0.5):	10.4	417 u	ım			d(0.9): 50.04	46 um	
Г								Particle S	ize	Distribut	ion						
	Volume (%)	5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0.01			0.1	20	1	Partic 7:30 PM		10 Size (µm)		100		100		100 90 80 70 60 50 40 30 20 10 00	
L	Size (um)	Vol Under	· %	Size (um)	Vol Under %	, <u> </u>	Size (um)	Vol Under %	1	Size (um)	Vol Under %	Size (um)	Vol Under 9	0/_	Size (um)	Vol Under %	
	0.020 0.022 0.024 0.027 0.030 0.033 0.037	0. 0. 0. 0. 0. 0. 0.	.00 .00 .00 .00 .00 .00	0.112 0.124 0.137 0.152 0.168 0.186 0.205	0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.626 0.692 0.766 0.848 0.938 1.038 1.149	2.58 3.18 3.84 4.54 5.30 6.12 6.99		3.499 3.872 4.285 4.742 5.247 5.806 6.425 7.400	22.36 24.42 26.60 28.89 31.29 33.78 36.37	19.572 21.658 23.966 26.520 29.346 32.473 35.934	69.2 72.1 74.9 77.5 80.0 82.3 84.4	7 8 6 9 6 5 4	109.466 121.132 134.041 148.326 164.133 181.625 200.981	97.17 97.67 98.10 98.46 98.76 99.01 99.22 99.22	
	0.041 0.045 0.050 0.055 0.061 0.067	0. 0. 0. 0. 0.	.00 .00 .00 .00	0.227 0.251 0.278 0.308 0.341 0.377	0.00 0.02 0.08 0.22 0.45		1.271 1.407 1.556 1.722 1.906 2.109	7.92 8.93 10.02 11.19 12.46 13.83		7.867 8.706 9.633 10.660 11.796	41.83 44.70 47.66 50.70 53.79	44.001 48.690 53.879 59.621 65.975	88.0 89.6 90.9 92.2 93.3	7 1 9 2	222.400 246.101 272.329 301.351 333.467 369.005	99.40 99.55 99.68 99.77 99.83 99.89	

0.075

0.083

0.091

0.101

0.00

0.00

0.00

0.00

0.417

0.462

0.511

0.565

0.75

1.11

1.54

2.03

2.334

2.583

2.858

3.162

13.053

14.444

15.983

17.687

56.92

60.07

63.19

66.27

73.006

80.787

89.396

98.924

94.29

95.15

95.92

96.59

408.330

451.846

500.000

15.30

16.88

18.59

20.41

99.94

99.97

S	Sample Na JW4 - Aver	a me: rage			SOF	P Name:				Measure Wednese	ed: day, April 05	, 2006 2:13:	13:51 PM		
S	Sample So Works = Vi	ource & ty	ype: c Inc-	Kerrie Se	Mea rben Vivia	asured by: an				Analyse Wednese	d: day, April 05	, 2006 2:13:	52 PM		
P S P 1 C V	Particle Na Soil Particle RI .230 Dispersant Vater	ame: : t Name:			Acc Hydr Abs 0.5 Disp 1.33	essory Na ro 2000S (A orption: persant RI:	me: \)			Analysis General Size rang 0.020 Weighte 0.625	s model: purpose ge: to 200 d Residual: %	0.000 um	Ser Nor Obs 15.6 Res Off	nsitivity: mal scuration 57 % sult Emula	: ation:
C 0	Concentra	tion: %Vol			Spa 3.84	n : 5				Uniformi 1.31	ity:		Res Volu	ult units: ume	
_										Vol. Weid	nhted Mean	D[4.3]			
S	52	m2/g	ea:		Sur	ace Weigh	ted Mean D	[3,2]:		19 126		D[:,0]:			
1	.00	111 - /g			5.92	un un	1			10.130	um				
	d(0.1):	1.526		um			d(0.5):	10.439) ur	n		d(0.9): 4	1.660	um
Г							Particle S	ize Di	stributio	on					
	Volume (%)	5.5 5 4.5 4 3.5 2.5 2 1.5 1 0.5 0.01			0.1		1 Partic		10 2e (um)		100	1	000	- 100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 0 3000	
F	JW4 -	Average	e. We	ednesda	v. April 05.	2006 2:1	3:51 PM								
L	Size (um)	Vol Under	0/_	Size (um)	Vol Under %	Sizo (um)	Vol Under %	. c:	70 (um) V	ol Under %	Size (um)	Vol Under %	Sizo (oder %
	0.020	0.0	00	0.112	0.00	0.626	2.66	31.	3.499	22.35	19.572	70.56	109.4	466	<u>98.64</u>
	0.022	0.0	00	0.124	0.00	0.692	3.28		3.872	24.36	21.658	73.74	121.1	132	98.93
	0.024	0.0	00	0.137	0.00	0.766	3.95		4.285	26.48	23.966	76.80	134.0	041	99.17
	0.027	0.0	00	0.152	0.00	0.848	4.68		4.742	28.71	26.520	79.69	148.3	326	99.36
	0.030	0.0	00	0.168	0.00	0.938	5.45		5.247	31.05	29.346	82.39	164.1	133	99.53
	0.033	0.0	00	0.186	0.00	1.038	6.28		5.806	33.50	32.473	84.88	181.0	525 194	99.67
	0.037	0.0	00	0.205	0.00	1.149	8 11		0.425 7 109	38.74	39 764	87.13	200.9	400	99.89
	0.041	0.	00	0.251	0.00	1.407	9.13		7.867	41.54	44.001	90.93	246.	101	99.96
	0.050	0.0	00	0.278	0.02	1.556	10.22		8.706	44.46	48.690	92.47	272.3	329 1	00.00
	0.055	0.	00	0.308	0.09	1.722	11.39		9.633	47.51	53.879	93.80	301.3	351 1	00.00
	0.061	0.	00	0.341	0.24	1.906	12.65		10.660	50.66	59.621	94.92	333.4	467 1	00.00
	0.067	0.	00	0.377	0.48	2.109	14.00		11.796	53.91	65.975	95.87	369.0	005 1	00.00
	0.075	0.0	00	0.417	0.78	2.334	15.46		13.053	57.23	73.006	96.66	408.3	330 1	00.00
	() 083	0.1	00	() 462	1 15	2 583	17 01		14 444	60.59	80 787	97 31	451 9	346	

0.00

0.00

0.511

0.565

1.59

2.10

2.858

3.162

0.091

0.101

15.983

17.687

18.68

20.45

63.95

67.29

89.396

98.924

97.84

98.28

500.000

Sample N JW5 - Ave	lame: erage		SOP	Name:			Measure Wedneso	ed: day, April 05	, 2006 2:22:1	3 PM	
Sample S Works = \	Source & type: /izon Scitec Inc	- Kerrie Ser	Meas ben Viviar	ured by: า			Analyse Wednese	d: day, April 05	, 2006 2:22:1	5 PM	
Particle N Soil Particle R 1.230 Dispersar Water	lame: II: nt Name:		Acces Hydro Absol 0.5 Dispe 1.330	ssory Nam 2000S (A) rption: ersant RI:	ie:		Analysis General p Size rang 0.020 Weighted 0.718	s model: burpose ge: to 200 d Residual: %	0.000 um	Sensiti Normal Obscu 16.51 Result Off	vity: ration: % Emulation:
Concentra 0.0095	ation: %Vol		Span 6.405	:			Uniformi 2.59	ity:		Result Volume	units:
Specific S 1.65	Surface Area: m²/g		Surfa 3.634	ce Weight e um	ed Mean D[3	2]:	Vol. Weig 30.894	Jhted Mean um	D[4,3]:		
d(0.1):	1.341	um			d(0.5): 1	0.372 ι	ım		d(0	.9): 67.7	75 um
					Particle Siz	e Distribut	ion				
Volume (%)	4 3.5 3 2.5 2 1.5 1 0.5 0.01		0.1	1	Particle	10 e Size (µm)		100	1(100 90 80 70 60 50 40 30 20 10 00
_JW5	- Average, W	/ednesday	y, April 05, 2	2006 2:22	:13 PM						
Size (μm) 0.020 0.022 0.024 0.027	Vol Under % 0.00 0.00 0.00 0.00	Size (µm) 0.112 0.124 0.137 0.152	Vol Under % 0.00 0.00 0.00 0.00	Size (µm) 0.626 0.692 0.766 0.848	Vol Under % 3.08 3.78 4.54 5.37	Size (µm) 3.499 3.872 4.285 4.742	Vol Under % 25.33 27.35 29.43 31.57	Size (µm) 19.572 21.658 23.966 26.520	Vol Under % 66.23 68.65 71.01 73.28	Size (µm) 109.466 121.132 134.041 148.326	Vol Under % 94.98 95.64 96.18 96.60
0.030 0.033 0.037 0.041	0.00 0.00 0.00 0.00 0.00	0.168 0.186 0.205 0.227	0.00 0.00 0.00 0.00	0.938 1.038 1.149 1.271	6.26 7.23 8.26 9.38	5.247 5.806 6.425 7.109	33.76 36.00 38.31 40.67	29.346 32.473 35.934 39.764	75.47 77.57 79.57 81.49	164.133 181.625 200.981 222.400	96.92 97.17 97.38 97.56
0.045 0.050 0.055 0.061	0.00 0.00 0.00 0.00	0.251 0.278 0.308 0.341	0.00 0.03 0.12 0.30	1.407 1.556 1.722 1.906	10.58 11.87 13.25 14.72	7.867 8.706 9.633 10.660	43.09 45.57 48.11 50.70	44.001 48.690 53.879 59.621	83.31 85.04 86.67 88.20	246.101 272.329 301.351 333.467	97.74 97.93 98.14 98.38
0.067 0.075 0.083 0.091	0.00 0.00 0.00 0.00	0.377 0.417 0.462 0.511	0.58 0.93 1.36 1.86	2.109 2.334 2.583 2.858	16.29 17.94 19.68 21.49	11.796 13.053 14.444 15.983	53.32 55.95 58.58 61.18	65.975 73.006 80.787 89.396	89.64 90.96 92.16 93.24	369.005 408.330 451.846 500.000	98.64 98.91 99.17 99.44

0.00

0.565

2.44

3.162

0.101

17.687

63.73

98.924

94.18

Sample N JW6 - Ave	Name: erage			SO	P Name	:				Measu Wednes	r ed: sday, Ap	oril 05	, 2006 2:28	3:07 F	PM		
Sample S Works = \	Source & typ Vizon Scitec	ie: Inc- Kei	rrie Ser	ben Viv	asured I ian	by:				Analys Wednes	ed: sday, Ap	oril 05	, 2006 2:23	3:09 F	PM		
Particle N Soil	Name:			Acc Hyd	essory	Name: S (A)				Analys General	i s mod e purpos	el: e			Sensiti Normal	vity:	
Particle R	RI:			Abs	orption	:				Size rar	nge:				Obscu	ation:	
1.230				0.5						0.020	to	2000	0.000 u	m	14.17	%	
Dispersa Water	nt Name:			Dis 1.33	persant 30	RI:				Weighte 0.670	ed Resi %	dual:			Result Off	Emulation	1:
Concentr 0.0084	r ation: %Vol			Spa 4.65	i n : 58					Uniforn 1.52	nity:				Result Volume	units:	
Specific \$ 1.58	Surface Area m²/g	a:		Sur 3.79	f ace We 94	ighted um	Mean D[3	3,2] :		Vol. We i 19.564	i ghted I um	Mean	D[4,3]:				
d(0.1):	1.452	un	n			d	(0.5): 1	0.068	ur	n			c	l(0.9):	48.34	l5 ui	m
						Pa	article Si	ze Dis	tributio	on							
	5															400	
	4.5								\sim							100	
	4 —									$\backslash \nearrow$						90	
	35									X						80	
(%	2									$\langle \rangle$						70	
e e	3														-	60	
l En	2.5														-	50	
	2							/								40	
	1.5										\mathbf{N}					30	
	1															00	
																20	
	0.5					-										10	
	0.01			0.1		1			10		100			1000) 300	0	
							Particle	e Size	e (um)								
_JW6	- Average,	Wedr	nesda	y, April 05	2006	2:28:0	7 PM		- ()								
Size (µm) Vol Under %	Siz	ze (µm)	Vol Under %	Size	(µm) Vo	ol Under %	Size	e (µm) V	ol Under %	Size	(µm)	Vol Under %	5	Size (µm)	Vol Under %	%
0.020	0.00	1	0.112	0.00	0	626	2.78		3.499	23.60	19	.572	69.74		109.466	98.1	4
0.022	2 0.00		0.124	0.00	0	.692	3.43		3.872	25.69	21	.658	72.55		121.132	98.5	9
0.024	7 0.00		0.157	0.00	0	.848	4.14		4.742	30.16	26	.520	75.20		148.326	90.9	3
0.030	0.00		0.168	0.00	0	938	5.73		5.247	32.54	29	.346	80.27	·	164.133	99.4	6
0.033	3 0.00		0.186	0.00	1	038	6.61		5.806	35.01	32	.473	82.56	5	181.625	99.6	3
0.037	7 0.00		0.205	0.00	1	149	7.55		6.425	37.58	35	.934	84.69		200.981	99.7	7
0.041	0.00		0.227	0.00	1	.271	8.56		7.109	40.23	39	001	86.66		222.400	99.8	8
0.045			0.251	0.00	1	556	9.64		8 706	42.97	44	690	88.46 90.11		240.101	100.0	0
0.055	5 0.00		0.308	0.02	1	722	12.05		9.633	48.71	53	.879	91.60		301.351	100.0	0
0.061	1 0.00		0.341	0.25	1	906	13.40	1	0.660	51.69	59	.621	92.94		333.467	100.0	0
0.067	7 0.00		0.377	0.49	2	109	14.83	1	1.796	54.72	65	.975	94.14		369.005	100.0	0
0.075	0.00		0 417	0.81	2	334	16.37	1	3 053	57 77	73	006	95.20		408 330	100.0	0

0.083

0.091

0.101

0.462

0.511

0.565

0.00

0.00

0.00

14.444

15.983

17.687

60.82

63.85

66.83

80.787

89.396

98.924

96.13

96.92

97.59

451.846

500.000

18.02

19.77

21.63

2.583

2.858

3.162

1.20

1.66

2.19

100.00

	Sample Na JW7 - Aver	a me: age			SOP	Name:				Measure Wednesc	ed: day, April 05	5, 2006 2:35:	:13 PM		
	Sample So Works = Vi	zon Scite	ype: c Inc-	Kerrie Se	Mea rben Vivia	sured by: in				Analyse Wednesc	d: day, April 05	5, 2006 2:35:	:15 PM		
ļ	Particle Na Soil	ame:			Acce Hydr	essory Nan o 2000S (A)	ne:			Analysis General p	model: ourpose		Sensit Norma	ivity:	
ł	Particle RI:	:			Abso	orption:				Size rang	ge:		Obscu	ration:	
í	1.230				0.5					0.020	to 200	0.000 um	n 16.80	%	
١	Dispersant Water	Name:			Disp 1.330	ersant RI:				Weighted 0.664	d Residual: %		Result Off	Emulation:	
(Concentrat 0.0105	ti on: %Vol			Spar 5.419	1 : 9				Uniformi 1.81	ty:		Result Volume	e units:	
	Specific Sι 1.52	u rface Ar m²/g	ea:		Surf a 3.947	a ce Weight 7 um	ed Mean D[3	3,2]:		Vol. Weig 24.219	hted Mean um	D[4,3]:			
	d(0.1):	1.500		um			d(0.5): 1	0.889	un	า		d((0.9): 60.5	13 um	
-							Particle Si	ze Distr	ibutio	n					
		4.5												100	
		4							\frown					00	
										\backslash				90	
		3.5								X				80	
	(%	3 —					/							70	
) el	2.5												60	
	L L L													50	
	Nol	2											-	40	
		1.5												30	
		1					/							20	
		0.5												20	
		0.0				/ _						•••		10	
		0.01			0.1	1		1	0		100	1	1000 30	00	
							Particl	e Size	(µm)						
ł	JW7 -	Average	e, We	ednesda	y, April 05,	2006 2:35	5:13 PM		. ,						
-	Size (µm)	Vol Under	%	Size (µm)	Vol Under %	Size (µm)	Vol Under %	Size (µm) Vo	ol Under %	Size (µm)	Vol Under %	Size (µm)	Vol Under %	
	0.020	0.0	00	0.112	0.00	0.626	2.64	3.	499	22.86	19.572	66.47	109.466	96.50	
	0.022	0.0		0.124	0.00	0.692	3.26 3.94	3.	872 285	24.85	21.658	69.15 71.73	121.132	97.15 97.69	
	0.024	0.0	00	0.157	0.00	0.848	4.68	4.	742	29.10	26.520	74.21	148.326	98.12	
	0.030	0.	00	0.168	0.00	0.938	5.47	5.	247	31.35	29.346	76.57	164.133	98.47	
	0.033	0.0	00	0.186	0.00	1.038	6.32	5.	806	33.69	32.473	78.82	181.625	98.75	
	0.037	0.0	00	0.205	0.00	1.149	7.24	6.	425	36.10	35.934	80.94	200.981	98.99	
	0.041	0.0	00	0.227	0.00	1.271	8.23	7.	109 867	38.60	39.764 44.001	82.94	222.400	99.20	
	0.050	0.0	00	0.278	0.00	1.556	10.43	8.	706	43.85	48.690	86.58	272.329	99.55	
	0.055	0.0	00	0.308	0.09	1.722	11.66	9.	633	46.59	53.879	88.24	301.351	99.71	
	0.061	0.	00	0.341	0.23	1.906	12.97	10.	660	49.40	59.621	89.78	333.467	99.83	
	0.067	0.	00	0.377	0.46	2.109	14.38	11.	796	52.26	65.975	91.22	369.005	99.93	
	0.075	0.1	00	0 417	0.76	2 224	15 00	12	052	EE 14	72 006	02 52	100 220	00.00	

0.083

0.091

0.101

14.444

15.983

17.687

58.03

60.89

63.71

80.787

89.396

98.924

93.72

94.78

95.71

451.846

500.000

17.48

19.18

20.97

2.583

2.858

3.162

1.13

1.57

2.07

0.462

0.511

0.565

0.00

0.00

0.00

100.00

Sampl JW12 -	e Name: - Average			SOF	P Name:			Measu Wedne	r ed: sday, April 05	, 2006 2:44:47	7 PM	
Sampl Works	e Source = Vizon S	& type: Scitec Inc-	- Kerrie Se	Mea rben Vivia	isured by: an			Analys Wedne	ed: sday, April 05	, 2006 2:44:48	3 PM	
Particl Soil	e Name:			Acc Hydi	essory Nan ro 2000S (A)	ne:		Analys Genera	is model: purpose		Sensit i Normal	vity:
Particle	e RI:			Abs	orption:			Size rai	nge:		Obscu	ration:
1.230	a a wé Nia w			0.5				0.020	to 2000	0.000 um	14.35	% F ree lations
Water	sant Narr	ie:		1.33	0			0.649	%		Off	Emulation:
Conce 0.0074	ntration: %V	ol		Spa 4.18	n : 0			Uniforn 1.61	nity:		Result Volume	units:
Specifi 1.81	ic Surfac m²/g	e Area:		Surf 3.30	ace Weight 8 um	ed Mean D[3	3,2]:	Vol. We 16.799	ighted Mean um	D[4,3]:		
d(0.1	1): 1.:	249	um			d(0.5): 8	3.261	um		d(0.	9): 35.77	77 um
						Particle Si	ze Distribu	ition				
Volume (%)	5 4.5 3 2.5 2 1.5 1 0.5 0						10		100			100 90 80 70 60 50 40 30 20 10
	0	.01		0.1	I	Particl	o Sizo (un	o)	100	10	00 300	0
JW	/12 - Av	erade. V	Vednesd	lay, April 05	5, 2006 2:4	14:47 PM	5 0126 (µii	''				
Size (um) Vol II	nder %	Size (um)	Vol Under %	Size (um)	Vol Under %	Size (um)	Vol Under %	Size (um)	Vol Under %	Size (um)	Vol Under %
0.20 (020	0.00	0.112	0.00	0.626	3.31	3.499	27.70	19.572	76.31	109.466	98.86
0.	022	0.00	0.124	0.00	0.692	4.08	3.872	30.01	21.658	79.07	121.132	99.05
0.	024	0.00	0.137	0.00	0.766	4.93	4.285	32.41	23.966	81.66	134.041	99.18
0.	027	0.00	0.152	0.00	0.848	5.84 6.82	4.742	34.90 37.47	26.520	84.06	148.326	99.27
0.	033	0.00	0.186	0.00	1.038	7.87	5.806	40.12	32.473	88.28	181.625	99.37
0.	037	0.00	0.205	0.00	1.149	9.00	6.425	42.85	35.934	90.07	200.981	99.39
0.	041	0.00	0.227	0.00	1.271	10.21	7.109	45.67	39.764	91.66	222.400	99.42
0.	045	0.00	0.251	0.00	1.407	11.51	7.867	48.57	44.001	93.05	246.101	99.45
0.	050	0.00	0.278	0.03	1.556	12.90	8.706	51.56	48.690	94.24	272.329	99.49
0.	055	0.00	0.308	0.11	1.722	14.39	9.633	54.62	53.879	95.26	301.351	99.54
0.	067	0.00	0.341	0.30	1.906	15.97	10.660	57.75	59.621	96.12	360.005	99.60
0.	075	0.00	0.377	0.39	2.334	19.46	13.053	64.11	73.006	97.43	408.330	99.73

0.083

0.091

0.101

0.00

0.00

0.00

0.462

0.511

0.565

1.43

1.98

2.61

2.583

2.858

3.162

14.444

15.983

17.687

21.36

23.37

25.48

67.28

70.39

73.41

80.787

89.396

98.924

97.91

98.31

98.62

451.846

500.000

99.80

Appendix D Subtidal Video Survey

Transect Number	Start (Latitude/Longitude)	End (Latitude/Longitude)	Length (m)
1	53°56'2.11"/128°43'10.95"	53°55'56.73"/128°42'45.65"	832
2	53°56'3.30"/128°43'9.99"	53°55'58.03"/128°42'44.88"	822
3	53°56'4.69"/128°43'9.94"	53°55'59.28"/128°42'44.16"	847
4	53°56'5.99"/128°43'9.56"	53°56'0.49"/128°42'43.39"	859
5	53°56'7.34"/128°43'9.17"	53°56'1.77"/128°42'42.63"	871
6	53°56'8.64"/128°43'8.02"	53°56'3.04"/128°42'41.91"	863
7	53°56'9.83"/128°43'7.11"	53°56'4.28"/128°42'41.09"	857
8	53°56'10.56"/128°43'4.05"	53°56'5.69"/128°42'41.09"	753
9	53°56'12.18"/128°43'4.60"	53°56'9.81"/128°42'53.78"	355
10	53°56'13.43"/128°43'4.32"	53°56'11.22"/128°42'53.78"	344
11	53°56'14.53"/128°43'2.69"	53°56'12.27"/128°42'52.00"	350
12	53°56'15.52"/128°43'0.34"	53°56'13.40"/128°42'50.42"	327
13	53°56'16.74"/128°42'59.77"	53°56'14.19"/128°42'47.88"	389
14	53°56'18.01"/128°42'58.85"	53°56'15.55"/128°42'47.12"	386
15	53°56'19.26"/128°42'57.90"	53°56'16.66"/128°42'45.63"	401
16	53°56'20.05"/128°42'55.17"	53°56'18.08"/128°42'45.10"	328
17	53°56'21.20"/128°42'53.79"	53°56'19.39"/128°42'45.02"	289
18	53°56'22.50"/128°42'53.26"	53°56'20.38"/128°42'43.20"	330
19	53°56'23.92"/128°42'53.26"	53°56'21.74"/128°42'43.01"	336
20	53°56'25.22"/128°42'52.55"	53°56'23.30"/128°42'43.70"	287
21	53°56'26.63"/128°42'52.35"	53°56'24.71"/128°42'43.68"	283
22	53°56'27.82"/128°42'51.30"	53°56'26.04"/128°42'42.96"	274
23	53°56'28.92"/128°42'49.96"	53°56'27.22"/128°42'42.10"	260
24	53°56'30.28"/128°42'49.43"	53°56'28.61"/128°42'41.43"	261
25	53°56'31.54"/128°42'48.74"	53°56'29.93"/128°42'41.12"	249
26	53°56'32.73"/128°42'47.45"	53°56'31.26"/128°42'40.45"	230
27	53°56'34.03"/128°42'46.87"	53°56'32.61"/128°42'40.12"	221
28	53°56'35.36"/128°42'46.35"	53°56'34.00"/128°42'39.78"	216
29	53°56'36.66"/128°42'45.77"	53°56'35.50"/128°42'40.26"	177
30	53°56'38.01"/128°42'45.53"	53°56'36.80"/128°42'39.93"	188
31	53°56'39.34"/128°42'45.15"	53°56'38.15"/128°42'39.45"	187
32	53°56'40.78"/128°42'44.96"	53°56'39.45"/128°42'38.92"	198
33	53°56'42.07"/128°42'44.69"	53°56'40.88"/128°42'39.03"	189
34	53°56'43.54"/128°42'44.54"	53°56'42.21"/128°42'38.46"	200

Table D-1 Transect Lengths and Positions (cont'd)

Transect Number	Start (Latitude/Longitude)	End (Latitude/Longitude)	Length (m)
35	53°56'44.64"/128°42'43.39"	53°56'43.40"/128°42'37.50"	193
36	53°56'45.88"/128°42'42.48"	53°56'44.75"/128°42'36.97"	179
37	53°56'47.16"/128°42'41.96"	53°56'46.05"/128°42'36.64"	175
38	53°56'0.66"/128°43'3.76"	53°56'46.08"/128°42'36.64"	2,525
38	53°55'58.77"/128°42'55.23"	53°56'8.39"/128°42'49.43"	536
40	53°55'56.73"/128°42'45.65"	53°56'4.92"/128°42'40.76"	455

cal/1048334_NorthernGateway_TDR_2009

(1048334_Northern

TDR_2009

R:12009Fiscal/104833

9Fiscal/1048334_NorthemGatewa

1048334_NorthemGateway_Presentation

... (1048334_NorthernGateway_Presentation

iscal/1048334_1

Scal\1048334_NorthernGateway_Prev

ردیا 048334_NorthemGateway_Presentation_C

1048334_NorthernGateway_Presentation_D

R:\2009Fiscal\1048334_

(1048334_NorthernGateway_Presentation_DF

09Fiscal/1048334_NorthernGatewi

